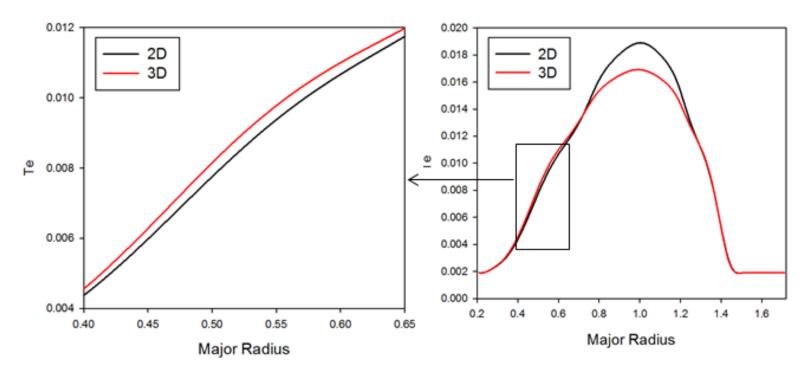

Ideal MHD Driven Disruptions

Year	Milestone
1	Develop criteria for when locally exceeding β -limit leads to a disruption
2	Develop validated model that reproduces thermal quench in an ideal MHD disruption
3	Develop validated model for current quench that reproduces current spike and decay times
4-5	Interface M3D-C1 and NIMROD with runaway electron model as developed by SCREAM

Develop criteria for when locally exceeding β -limit leads to a disruption

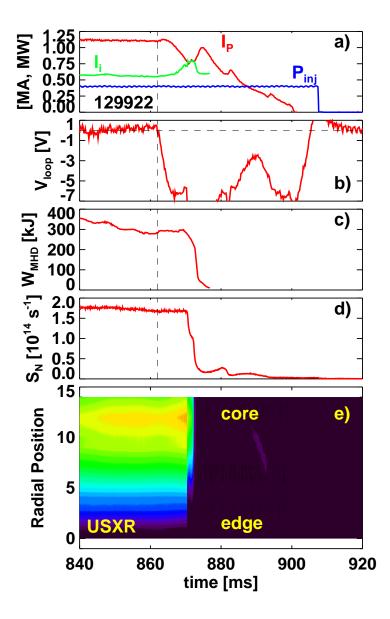
- Perform numerical experiments:
 - start with equilibrium that is marginally unstable to pressuredriven (ballooning) modes on some surfaces
 - When does this just lead to a nonlinear flattening of the pressure gradient....similar to increased transport?
 - Can we start with a stable equilibrium, increase heating locally, and see β saturate?
- Possible guidance from experimental discharges that see β saturate even as additional heating is applied?
- Can we make contact with Cowley et al. theory?
- Suggest: Exploratory teams then joint benchmark. Key may be in semi-analytic family of equilibrium (p,q)


Example: Heating Past the Beta Limit

Poincaré plots (top) and change in temperature (bottom) at 4 times (units of τ_A)

- NSTX plasma discharge 124379 at t=0.64 sec.
- Initial pressure in EFIT file is slightly above β limit, causing instability
- An internal (4,3) mode goes unstable near the q=1.33 surface
- Instability distorts the magnetic surfaces in such a way that $\chi_{||}$ acts to reduce the pressure in the center.
- Discharge becomes stable and re-symmetrizes

Heating Past the Beta Limit (continued)


- Final mid-plane temperature profiles for the 3D calculation and for an equivalent 2D calculation with the same transport coefficients.
- It is seen that the net effect of the 3D instability is to reduce the temperature in the center slightly and increase it at mid-radius.
- Thus, the nonlinear effect is simply to increase the central transport.

Develop validated model that reproduces thermal quench in an ideal MHD disruption

- Can we reproduce thermal quench times with just unstable modes and large $\kappa_{||}$?
 - Do we need hyper $\kappa_{||}$ (or PIC closure?)
- What role does impurity radiation play?? How are the impurities transported ?

Unique Class of Major Disruptions Identified in NSTX

- Recipe:
 - Generate a stable low(er) q95 discharge.
 - Run it to the current limit of the OH coil.
 - Ramp the OH coil back to zero, applying a negative loop voltage, while leaving the heating on.
 - Watch I_i increase, then disruption occurs.
- Mechanism responsible for 21 for the 22 highest W_{MHD} disruptions in NSTX.
- Specific example in the general area of how unstable current profiles lead to catastrophic instability

[S. Gerhardt, Nov. 2013]

Initial attempts to model this with M3D-C1 show some promise.

Convergence and control runs now underway.

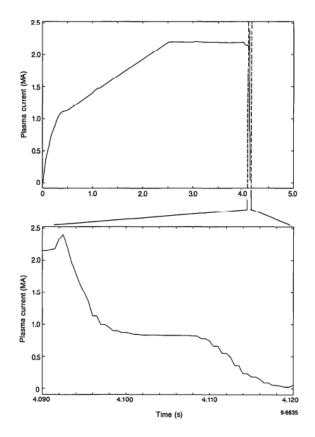
1.2e+6

1.0e+6

8.0e+5

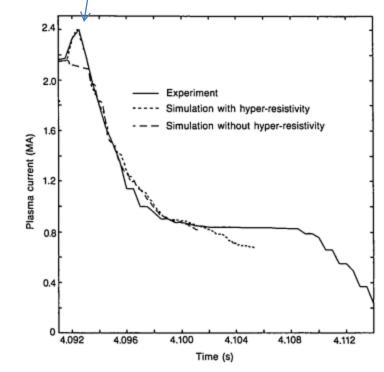

6.0e+5

4.0e+5


2.0e+5

0.0

Plasma Current



Develop validated model for current quench that reproduces current spike and decay times

Plasma current in TFTR shot 19960

Can reproduce current spike in 2D with hyper-resistivity (TSC)

Can this be done in 3D in a consistent and defensible way?

To Do:

- Teams proposing illustrative cases that can be reproduced by other codes.
 - Initial equilibrium
 - Boundary conditions
 - Sources
- Initially emphasize generic physics of the disruption
 - Self-Healing of *some* marginally unstable states
 - Not so for others....what is the difference
 - Physics of the Thermal Quench
 - Physics of the Current Quench (and spike)