Center for Tokamak Transient Simulations (CTTS)

Ideal MHD Driven disruption modeling:

Jardin, Kruger, Zhu, Krebs

VDE and RWM:

Sovinec, Ferraro, King, Strauss, Breslau, Lyons, Held, Zhu, Krebs

NTM:

Kruger, Held, King, Lyons, Ramos

Mitigation:

Lao, Kim, Parks, Samulyak, Jardin, Ferraro

Ideal MHD Driven Disruptions

Year	Milestone
1	Develop criteria for when locally exceeding β -limit leads to a disruption
2	Develop validated model that reproduces thermal quench in an ideal MHD disruption
3	Develop validated model for current quench that reproduces current spike and decay times
4-5	Interface M3D-C1 and NIMROD with runaway electron model as developed by SCREAM

Vertical Displacement Events

Year	Milestone
1	Benchmark NIMROD and M3D-C1 for axisymmetric VDE in toroidal geometry
	Parametric studies of influence of halo-region properties and compare with analysis
2	Benchmark NIMROD and M3D-C1 for <i>non-axisymmetric</i> VDE in toroidal geometry
	Incorporate sheath effects in VDE computations
3	Study effect of non-axisymmetric walls on VDE
4-5	Validation studies with DIII-D, NSTX, JET
	Study of wall forces in mitigated and unmitigated VDE

Resistive Wall Modes

Year	Milestone
1	Benchmark NIMROD and M3D-C1 for linear RWM in toroidal geometry
2	Explore effect of rotation and two-fluid effects on RWM linear stability
3	Nonlinear studies of RWM How does RWM precipitate thermal quench?
4-5	Explore kinetic effects on stability with NIMROD, M3D-C1/DK4D: Compare with MARS-K
	Explore disruptions caused by energetic particles (fishbone modes) interacting with RWM

Neoclassical Tearing Modes

Milestone Year Identify suitable for NTM/locked mode disruptions on DIII-D for modeling 1 Implement Ramos-form of DKE closures into NIMROD and M3D-C1. Investigate Maxwell torques induced by error fields in the presence of tearing modes 2 Benchmark M3D-C1 and NIMROD with DKE closure about fixed magnetic island geometry Work with Δ '>0 cases to produce a saturated TM as an initial state for DKE NTM calculations Use Δ '>0 case to study growth of non-rotating magnetic island in presence of a resistive wall Investigate resistive-wall torques induced by error fields in the presence of tearing modes Model NTM evolution using DKE closures including temperature equilibrium and 3 perturbation to BS current Study side-band induced stochasticity and edge effects in island in presence of resistive wall Investigate NTV torques with DKE closures on the mode from field errors 4-5 Understand the locking of NTMs from NTV, field errors and the drag on the resistive wall 5 Investigate hypotheses on how locked modes grow and cause disruptions

Disruption Mitigation by Shattered Pellets

Year	Milestone
1	Construct SPI plume model and develop tracking algorithms
	Develop 3D local pellet ablation model for FronTier-MHD and perform single-pellet tests
	Perform SPI scoping and sensitivity studies using NIMROD with an existing analytic SPI model
	Implement full ionization/recombination/radiation model in M3D-C1
2	Implement pellet debris plumes into FronTier-MHD and test tracking algorithms.
	Perform SPI simulations and validation tests using FronTier-MHD and DIII-D data
	Develop analytic kinetic heat flow models for use with NIMROD and M3D-C1
	Complete SPI scoping studies using NIMROD and M3D-C1 with an existing analytic SPI model.
3	Develop algorithms for coupling of FronTier-MHD pellet ablation with NIMROD and M3D-C1
	Test multiscale coupling algorithms using 1D FronTier pellet code and 1D PRL MHD code
	Start multiscale integration of Frontier-MHD with NIMROD and M3D-C1
4-5	Perform test of multiscale coupling of FronTier-MHD pellet ablation w. NIMROD and M3D-C1.
	Studies of accuracy, convergence, and stability of coupling algorithms
	Validation tests using FronTier-MHD/NIMROD and M3D-C1 and DIII-D experimental data
	Perform validation simulations using JET data as available
	Perform simulations of SPI applied to ITER 6

What should be our goals?

- Complete Milestones
- Standard "benchmark problems" performed by both NIMROD and M3D-C1 and documented well enough for other codes to try
 - This will require some compromises so both codes can participate
 - May require some code development from one or both codes
 - Both codes could then extend these studies in unique ways
- Publish --- Goal should be 3 PP and one PRL /year