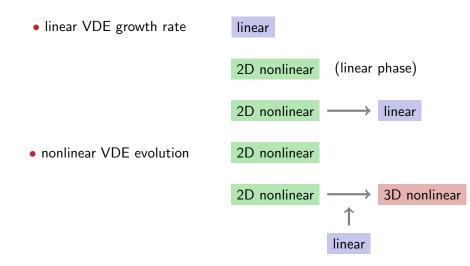
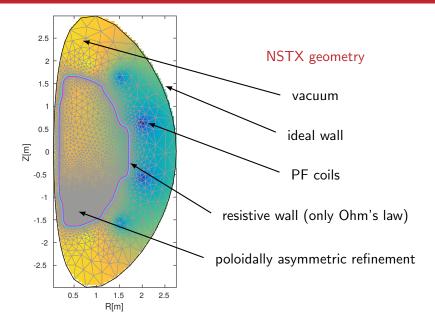


Status and plans for VDE modeling with $M3D-C^1$


Isabel Krebs, D. Pfefferlé, N. Ferraro, S.C. Jardin

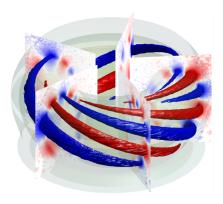
CTTS Physics Planning Meeting October 22, 2017 Milwaukee, WI

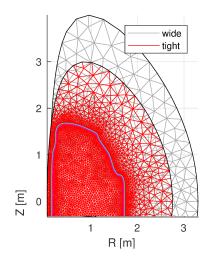
Details on the status of NSTX VDE modeling


Invited talk The ins and outs of modelling vertical displacement events David Pfefferlé Wednesday 9:30–10:00 AM NI3.00001

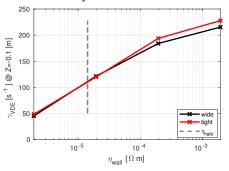
Using M3D-C¹ for VDE simulations

STATUS

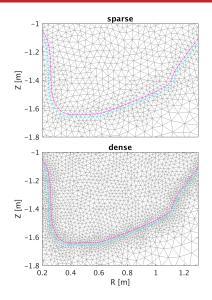

Mesh: Plasma, resistive wall & vacuum


New postprocessing tool: c1matlab

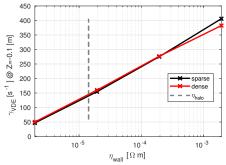
- wall currents & forces, in particular divertor region
- 2D & 3D movies


• ...

Computational boundary does not affect VDE

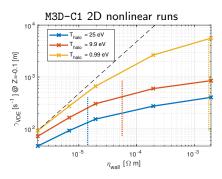


- computational boundary is a perfect conductor
- < 1% effect on nonlinear 2D evolution for highest wall resistivity and fastest VDE



STATUS

Induced wall currents supported by few mesh points


- skin depth $\delta = \sqrt{2\eta_w/\gamma_{VDE}\mu_0}\gtrsim 10cm$
- currents are well resolved in resistive wall despite small thickness

Halo temperature has notable impact on VDE evolution

- VDE growth rate $\gamma_{\rm VDE} \propto \eta_{\rm wall}$ for small $\eta_{\rm wall}$
- $T_{halo} = p_{edge}/n_{edge}$ cannot be too small to avoid negative overshoot
 - ► $T_{halo} = 25 eV$ and $\eta_{halo} \approx 1.4 \times 10^{-5} \Omega m$
 - cross-section of open field-line region is large
 - $\Rightarrow \ \eta_{\rm halo} \ {\rm competes} \ {\rm with} \\ {\rm wall}$
- Workaround: compute Spitzer resistivity by

$$\eta(\boldsymbol{x}) = \frac{\eta_0}{(T_e(\boldsymbol{x}) - T_{\text{offset}})^{3/2}}$$

VDE benchmark between M3D-C¹ & NIMROD

- 2D nonlinear
- generic tokamak geometry
- simple case which is easy to reproduce with other codes
- rectangular resistive wall?
- starting from vertically unstable equilibrium
- · comparison of overall forces on wall

$$\mathbf{F} = \int_{\mathsf{wall}} \mathbf{j} \times \mathbf{B} \, dV$$

PLANS

More plans for M3D-C¹ VDE modeling

- Benchmarking
 - NIMROD (first 2D, later 3D)
 - possibly DINA (2D)
- use DIII-D cases
- enable variable halo width
- develop reduced model that reflects important aspects of 3D nonlinear simulations
- using breaks in resistive wall
- ITER VDE modeling

Long-term

• influence of 3D wall on vessel forces