### Modeling disruptions caused by NTMs

### S. Kruger, Tech-X

CTTS Meeting APS-DPP, Milwaukee, WI October 22, 2017 Why are NTMs (and RWMs) of concerns for Burning Plasma Experiments?

# • Ideal MHD limits relatively well-understood $\beta_N < 4 \ l_I$ relatively robust limit



 But, near boundaries, resistive instabilities also become more unstable (Δ' goes to infinity at ideal stability limit)



# Tearing modes, while rotating, cause a *soft* beta limit, until they lock



Courtesy of R. LaHaye, General Atomics

#### Rutherford equation provides paradigm for understanding NTM Two fluid+



#### below ion Larmor radius

- At ion Larmor radius, island is nonlinear (> 1mm)
- A 'seed' island may be needed
- Seed comes from other MHD
- Island then grows to saturation
- Theory is unable to provide answers between linear regime and ion Larmor radius scale length



#### For small island effects: Hegna, Fitzpatric, Waelbrock, Wilson

# ITER will operate well above the 'marginal β' where 3/2 NTMs can occur

## Ramp down β with a 3/2 NTM present to measure value at which NTM becomes stable: *Physics parameters at marginal*

β point for NTM stability • Above this  $\beta$  a large enough.<sup>5</sup> JET seed can trigger the NTM ASDFX U JT-60U ITFR ♦ New JT-60U data confirms reduced stability at low  $\rho^{*}$ ER ops. noint (reduced plasma shaping likely accounts for slightly lower  $\beta$  values<sup>1</sup>) This makes extrapolation 0 of the triggering physics 0.3  $\rho_{i\theta}^{*}$ the critical issue...

SEK: But this doesn't really get at onset physics because flow in presence of island is different than onset flow

Buttery, 2008

### **Experimentally: different types of observed TMs**

#### •"Generated Tearing Modes"

- Another MHD event (sawtooth, ELM) clearly related temporally to appearance of tearing modes
- ◆ Historically: The types of NTMs Z.Y. Chang published for TFTR

#### •"Spontaneous Tearing Modes"

- Little to no other MHD occuring at time of TM appearance
- Typically near ideal MHD Beta limit implying large  $\Delta$ '
- ◆ Seen on all machines
- ◆ 2/1 modes almost always have near-marginal ∆' (3/2, 4/3, 5/3 tend to be more triggered)
- "Mixed-type Tearing Modes"
  - Other MHD activity present, but temporal correlation difficult
  - ♦ Also typically near ideal MHD beta limit

D.P. Brennan, S.E. Kruger, T.A. Gianakon, D.D. Schnack *Nuclear Fusion*, **45** (2005) B1178

### NTMs can be hard to simulate

- •Consider what it takes to simulate self-consistent triggered tearing mode (e.g., sawtooth triggering 4/3)
  - •No rotation, anisotropic heat flux (Braginskii form),  $\Pi_e$
  - Anisotropic heat flux gives threshold island width

#### •Lutjens:

- 1. Need  $\delta_R < w_D =>$  high S (Scaling: FKR, Bondeson, Fitzpatrick)
- 2. High S => smaller generated island width (Scaling: Hegna)
- 3. Smaller generated island width => Need smaller w<sub>D</sub>
- 4. Go to #1
- To date, no one has done a self-consistent triggered tearing mode
  - (Artificial trigger size, non-realistic equilibria, etc.)
  - ♦ Advanced closures will likely help

# **Understanding experimental uncertainties important**

- $\Delta$ ' drive:  $\tilde{B} \cdot \nabla \frac{J_{\parallel 0}}{B_0}$ 
  - $\sim m\tilde{\psi} \frac{\partial^3}{\partial r^3} \psi_0$
- Stiff problem: Small errors lead to large changes
- Practical matter: good equilibria are hard to find
- Theory is still ignoring a lot (e.g., energetic particles) so experimental comparison can be uncertain



- Other things to make you miserable:
- Realistic NTM => realistic time scales (100s of msec)
- Computationally expensive *and* need to worry about transport time scale interactions
- Rotation is really critical
- No quick evaluation with linear codes like ideal MHD (Resistive DCON?)

## So what to do?

#### • Birth

- As a practical matter, we will *always* study this, but cheating can be useful
- Explain shear flow trend? (see next slide)
- Life
  - Models for Π<sub>e</sub>, q<sub>e</sub> critical: Basic science validation (island saturation)
- Locking
  - $\Pi_i$ ,  $q_i$  (NTV)
  - RWM, field errors
  - Impact: How easy is it to lock an isla
- Death/Disruption
  - Why do locked modes lead to disruption?
  - Likely interaction with transport



## From the proposal

**Project objective:** Develop increased understanding and improved predictive capability for locked mode disruptions and how best to avoid them.

- Model NTM growth and saturation using the DKE closures to compute the temperature equilibration about an island and the perturbation to the bootstrap current.
- Understand the locking of NTMs from NTV and Maxwell torques from field errors and the drag on the resistive wall and the scaling of these torques to burning plasma conditions.
- Investigate hypotheses on how locked modes grow and cause disruptions.

**Basic validation** 

NTM slowing down

Locked modes

## From the proposal: Timeline

| Identify suitable for NTM/locked mode disruptions on DIII-D for modeling                         |
|--------------------------------------------------------------------------------------------------|
|                                                                                                  |
| Implement Ramos-form of DKE closures into NIMROD and M3D-C1.                                     |
| Investigate Maxwell torques induced by error fields in the presence of tearing modes             |
| Benchmark M3D-C1 and NIMROD with DKE closure about fixed magnetic island                         |
| geometry                                                                                         |
| Work with $\Delta'>0$ cases to produce a saturated TM as an initial state for DKE NTM            |
| calculations                                                                                     |
| Use $\Delta > 0$ case to study growth of non-rotating magnetic island in presence of a resistive |
| wall                                                                                             |
| Investigate resistive-wall torques induced by error fields in the presence of tearing modes      |
| Model NTM evolution using DKE closures inc. temp equilib. and perturbation to BS                 |
| current                                                                                          |
| Study side-band induced stochasticity and edge effects in island in presence of resistive        |
| wall                                                                                             |
| Investigate NTV torques with DKE closures on the mode from field errors                          |
| Understand the locking of NTMs from NTV, field errors and the drag on the resistive wall         |
| Investigate hypotheses on how locked modes grow and cause disruptions                            |
|                                                                                                  |

### **Extra Slides**

## **Code development tasks**

- $\Pi_{e}$ 
  - ◆ Braginskii, Heuristic (including NTV?), DKE
  - Important for all stages
- **q**<sub>e</sub>
  - Braginskii, DKE
  - DKE makes things easier
  - Important for all stages
- $q_i, \Pi_i$ 
  - Braginskii (with heat flux corrections?), DKE
  - Necessary for locking
- Hot particles may be important in cases
- Getting mode rotation right requires two-fluid
- Validation
  - What cases? s

# Headline: NTM β limits may fall as ITER-like parameters approached

# • NTM thresholds are found to fall as co- injected torque falls, on a rang DIII-D: 2/1 NTM

... a concern for low rotation devices such as ITER

... exacerbated by an underlying decrease in NTM stability with  $\rho^{\ast}$ 



Buttery, 2008