ITER and JET AVDE disruptions

HRS Fusion CTTS 2017

1

AVDE disruptions depend on the ratio of current quench time τ_{CQ} to resistive wall penetration time τ_{wall} .

An ITER FEAT 15MA initial state was used, with the current profile modified to represent MGI mitigation. The current was set to zero outside the q = 2 magnetic surface, keeping the total current unchanged. This made the plasma MHD unstable and caused a TQ. The plasma was also vertically unstable to a VDE.

The plasma was evolved at constant current until $t = t_1 = 1.4\tau_{wall}$, when the VDE reached a small amplitude. The current was then driven using

$$I(t) = I_0 \frac{\tau_{CQ} + t_1 - t}{\tau_{CQ}}$$

(a) Contour plot of poloidal magnetic flux ψ at time $t = 1.9\tau_{wall}$ in the (R, Z) plane with $\phi = 0$, $S_{wall} = \tau_{wall}/\tau_A = 1000$, with $\tau_{CQ}/\tau_{wall} = 1/2$

(b) Time history of $I, \xi, \Delta F_x, P, 10 \times HF$ in wall time units.

scaling of VDE growth time in ITER simulations

AVDE growth time depends on τ_{CQ}/τ_{wall} .

The growth time of the VDE is well fit by

$$au_{vde} = rac{ au_{CQ}}{1 + au_{CQ}/(5 au_{wall})}$$

where $\tau_{vde} = t(\xi = 4m) - t_1$.

There are two limits of the VDE.

Small τ_{CQ}/τ_{wall} , $\tau_{vde} = \tau_{CQ}$. VDE is driven by CQ. ITER is in this limit. CMOD, NSTX, AUGC, AUGW, DIID have $\tau_{CQ} \leq 5ms$, $\tau_{wall} \approx 10ms$. [Myers, 2016] Large τ_{CQ}/τ_{wall} , $\tau_{vde} = 5\tau_{wall}$. VDE is an n = 0 RWM. This is the JET limit.

Force asymmetry in ITER simulations with CQ

Asymmetric wall force ΔF_x depends on τ_{CQ}/τ_{wall} .

The asymmetric wall force in the wall is

$$\Delta F_x = \left[\left(\oint d\phi \mathbf{F} \cdot \hat{\mathbf{x}} \right)^2 + \left(\oint d\phi \mathbf{F} \cdot \hat{\mathbf{y}} \right)^2 \right]^{1/2}, \quad \mathbf{F} = \delta_{wall} \oint dl R \mathbf{J}_{wall} \times \mathbf{B}_{wall}$$

Simulations with varied τ_{CQ}/τ_{wall} . The maximum in time of ΔF_x is plotted for simulations with different τ_{CQ}/τ_{wall} . ΔF_x has $S_{wall} = 10^3$, $\Delta F_{x0}, S_{wall} = 10^4$. Small τ_{CQ}/τ_{wall} ITER relevant regime has small ΔF_x . Large τ_{CQ}/τ_{wall} JET relevant regime has large wall force.

The asymmetric wall force ΔF_x is approximately proportional to the maximum in time of $M_{IZ} = \xi I$.

 $\Delta F_x \approx \delta_0 \pi B M_{IZ}, \qquad \delta_0 = 0.03$

This reduces 3D to 1D, and explains why the force is less in the ITER regime: when ξ is large, I is small.

Effect of τ_{CQ}/τ_{wall} was found in JET simulations [Strauss *et al.* Phys. Plasmas, 2017] M3D asymmetric vertical displacement event (AVDE) disruption simulations initialized with reconstruction of JET shot 71985 B = 2T

(a) Poloidal flux ψ at AVDE saturation (b) Time history in units of wall time τ_{wall} . The current was driven using experimental time history data for shot 71985, in wall time units.

$$I_{\phi}(t/\tau_{wall}) \approx I_p(t/\tau_{wall}^{JET})$$

Shown are simulation total current I and vertical displacement ξ , and the measurements of I_p and z_p . Note that ξ agrees well with z_p during the growth and saturation phases. The normalized pressure P shows the TQ. Also shown is asymmetric wall force F_x , in MN. (c) Peak ΔF_x and fit as a function of τ_{CQ}/τ_{wall} , where τ_{wall} was artificially varied. ΔF_x varies by an order of magnitude.

Comparison of simulation and JET shot 71985 data

Validation of M3D compared maximum values in time history of several variables.

variable	simulation	experiment
ξ_{max}	1.5m	1.4m
HF	0.16	0.16
ΔHF	0.07	0.05
$\pi B \Delta M_{IZ}$	1.2 MN	1.3 MN
ΔF_x	1.1 MN	
$N_{rotation}(a)$	2.8	2.8
$\Delta I/I$	0.045	0.055
$\Delta Ia/(I\Delta\xi)(b),(c)$	0.27	0.27

Runaway Electrons - Fluid model

MHD simulations were extended by added RE fluid [Helander 2007],[Cai and Fu 2015].

$$\frac{1}{c}\frac{\partial\psi}{\partial t} = \nabla_{\parallel}\Phi - \eta(J_{\parallel} - J_{\parallel RE}) = -E$$

where $J_{\parallel RE}$ is the RE current density.

$$\frac{\partial J_{\parallel RE}}{\partial t} \approx -c \mathbf{B} \cdot \nabla \left(\frac{J_{\parallel RE}}{B} \right) + S_0 (E - E_0) J_{\parallel RE}$$

where S_0 is source strength, E_0 is threshhold. Source has avalanche [Rosenbluth and Putvinski (1997)] form.

REs quench slowly, might change the regime to $\tau_{CQ}/\tau_{wall} > 1$ According to [Konovalov *et al.* IAEA FEC 2016 TH/P3-31] it is possible to have $\tau_{CQ} \leq 0.3s \approx \tau_{wall}$, even with REs.

Summary and Conclusions

- AVDE depends on au_{CQ}/ au_{wall}
 - small au_{CQ}/ au_{wall} regime
 - * ITER, NSTX, CMOD, DIII-D, AUG
 - * ΔF_x is relatively small
 - * $\tau_{vde} = \tau_{CQ}$
 - large au_{CQ}/ au_{wall} regime
 - * JET
 - * ΔF_x is relatively large
 - * $\tau_{vde} = \tau_{wall}$
- AVDE depends can depend on REs
 - Fluid nonlinear RE model