MHD and Disruption Studies at USTC

Ping Zhu^{1,2}

University of Science and Technology of China¹ University of Wisconsin-Madison²

> CTTS Physics Planning Meeting Sunday Oct. 22, 2017 Hilton Milwaukee, Walker Room Milwaukee, WI

Ongoing and planned MHD and disruption studies

- MHD and EP analyses of CFETR baseline scenarios
 - ▶ Ideal (wall) MHD modes (D. Banerjee, S.-K. Cheng, R. Han)
 - ► RWM (R. Han)
 - ► TAE/EPM (Y.-W. Hou)
- Disruption-relevant MHD and EP studies
 - ▶ NIMEQ-flow and VDE (H.-L. Li)
 - ► TM/NTM (X.-T. Yan, Z. Chen)
 - ▶ LM, plasma response, and NTV (W.-L. Huang, X.-T. Yan, Z.-H. Li)
 - MGI mitigation (D. Banerjee)
 - Fishbone (Z.-H. Zou)

NIMROD is mainly used along with other major codes for linear analysis and nonlinear simulations of MHD and EP physics

- MHD physics
 - Linear ideal modes: AEGIS, NIMROD, (GATO, MARS, ELITE, BOUT++)
 - ► Linear resistive modes: NIMROD, (PEST-3, M3D-C1)
 - ▶ Nonlinear: NIMROD, (BOUT++, M3D-C1)
 - ► Control/mitigation (MGI, RMP, ...): NIMROD, (MARS, ...)
 - **.....**
- EP physics
 - Linear: NIMROD, (NOVA-K, M3D-K)
 - ▶ Nonlinear: NIMROD, (M3D-K)
 - **.....**

CFETR baseline scenario from 1.5D integrated transport simulations features deeply reversed magnetic shear and edge pedestal regions

IWM: NIMROD calculations indicate the baseline scenario linearly unstable to ideal (wall) MHD

IWM: NIMROD calculations show linear ideal modes all localized near edge for $n \ge 3$

IWM: Linear growth rates of low-n ($n \le 3$) ideal MHD modes can be obtained from AEGIS calculations [Han et al. 2017]

 The n = 3 ideal MHD mode critical wall position agrees with NIMROD calculation.

IWM: Mode profiles from AEGIS calculations indicate that unstable low-n (n = 2, 3) ideal MHD modes remain localized near edge

• The *n* = 3 ideal MHD mode profile agrees well with NIMROD calculation.

IWM: AEGIS calculations indicate n = 1 ideal mode stable for designed wall location d/a = 1.2

IWM: Linear growth rates of ideal MHD modes have been benchmarked among multiple major MHD codes for CFETR [Li et al. 2017, Banerjee et al. 2017]

RWM: n=1 RWM is unstable for the designed wall location but can be stabilized by toroidal rotation above a low threshold [Han et al. 2017]

TAE: CFETR baseline scenario found unstable to EP-driven TAEs from NIMROD calculations [Hou et al. 2017]

Upper: n = 1 - 4; Lower: n = 5 - 8

TAE: EP-driven TAE instabilities analyzed in NIMROD simulations

- Slowing-down EP distribution with β_h fraction of 0.2.
- Global twisted mode structure characteristic of TAE and RSAE (left: n = 3; right: n = 7).

TAE: NIMROD simulations find EP-driven TAE instabilities in low n range

- TAE real frequencies (left) are located in the Alfvénic continuum gap, consistent with analysis from NOVA-K [Zou et al. 2017].
- TAE growth rates (right) are peaked at n = 4.

NIMEQ: Modification of pressure is up to 10% when toroidal rotation Mach number ~ 0.1 (frequency $8.0 \times 10^4 rad/s$) [Li and Zhu 2017]

- Left: Pressure with and without toroidal flow.
- Right: Relative change of pressure $(P_{with flow} P_{without flow})/P_{without flow}$ induced by toroidal flow.

TM: NIMROD nonlinear benchmark on double helicity tearing in presence of poloidal flow (ITPA-MHD JA2) [Yan and Zhu 2017]

•
$$q(r) = 1.4(1 + (r/0.74a)^4)^{1/2}$$

•
$$S = 10^5$$
, $P_{\rm rm} = 1$

•
$$u_{\theta} = 6480 \frac{r}{a} [1 - (\frac{r}{a})^3] (m/s)$$

LM: Nonlinear plasma response to RMP of tokamak in Rutherford regime from NIMROD simulations [Zhu et al. 2017]

- RMP helicity (2, 1), amplitude range $10^{-4} \sim 10^{-3}$.
- Nonlinear response simultion includes 6 toroidal Fourier modes.

LM: Locked mode state of nonlinear plasma response qualitatively agrees with theory [Zhu et al. 2017]

- **k** · **u** profile evolution from theory (left, cylinder) and NIMROD simulations (right, torus) similar.
- Mode locking location ($\mathbf{k} \cdot \mathbf{u} = 0$) inward of resonant surface in simulation.

NTV: RMP can induce NTV torque in edge pedestal to the order of NBI torque ($\sim 1 N/m^2$) [Yan et al. 2017]

- RMP helicity (2,1), amplitude range $10^{-4} \sim 10^{-3}$.
- Fourier spectrums of perturbed magnetic field strength localized and peaked around resonant surfaces (1, 1) and (2, 1).
- NTV torque density profile peaked in edge pedestal region.

MGI: Initial distribution Neon gas injection localized near edge (DIII-D) [Banerjee et al. 2017]

Ionized Ne (neon) density

MGI: NIMROD simulation demonstrates Neon gas injection leads to thermal quench (DIII-D)

MGI: Radiation power density distribution during TQ phase (DIII-D)

MGI: During TQ phase magnetic flux surface lost outside core region (DIII-D)

MGI: Simulation demonstrates thermal quench phase induced by lithium gas injection on EAST

[Banerjee et al. 2017]

MGI: During TQ phase magnetic flux surface lost outside core region (EAST)

MGI: Unstable 2/1 mode leads to disruption onset (EAST)

Fishbone: EP-driven 1/1, 2/2, and 3/3 modes on HL-2A reproduced in NIMROD calculations [Zou et al. 2017]

- Mode structures twist poloidally and extend radially.
- $\beta_{frac} = 0.25(1,1), 0.3(2,2), 0.3(3,3).$

Fishbone: 1/1, 2/2, and 3/3 modes can be driven unstable by increasing EP β_h (HL-2A)

- Real frequency (left) and linear growth rates (right).
- (1,1) and (2,2) kink mode first suppressed by β_h , then become fishbone instabilities at higher β_h .
- (3,3) mode are purely driven by EPs.

Summary and plan

- The IWM (ELM), RWM, and TAE stabilities of CFETR baseline scenario have been evaluated.
 - ► IWM are mostly edge-localized (i.e. ELMs) instead of global (D. Banerjee, S.-K. Cheng, R. Han).
 - RWMs could be stabilized with low toroidal rotation, even in absence of other disspative stabilization mechanisms or feed-back control schemes (R. Han).
 - ▶ Both TAE and RSAE can be driven unstable with EPs (Y.-W. Hou)
- Disruption-relevant MHD and EP studies are ongoing and planned
 - NIMEQ-flow and VDE (H.-L. Li)
 - ► TM/NTM (X.-T. Yan, Z. Chen)
 - ▶ LM, plasma response, and NTV (W.-L. Huang, X.-T. Yan, Z.-H. Li)
 - MGI mitigation (D. Banerjee)
 - ► Fishbone (Z.-H. Zou)

