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Ongoing and planned MHD and disruption studies

@ MHD and EP analyses of CFETR baseline scenarios
» Ideal (wall) MHD modes (D. Banerjee, S.-K. Cheng, R. Han)
» RWM (R. Han)
» TAE/EPM (Y.-W. Hou)
@ Disruption-relevant MHD and EP studies
» NIMEQ-flow and VDE (H.-L. Li)
» TM/NTM (X.-T. Yan, Z. Chen)
» LM, plasma response, and NTV (W.-L. Huang, X.-T. Yan, Z.-H. Li)
» MGI mitigation (D. Banerjee)
» Fishbone (Z.-H. Zou)



NIMROD is mainly used along with other major
codes for linear analysis and nonlinear
simulations of MHD and EP physics

@ MHD physics
» Linear ideal modes: AEGIS, NIMROD, (GATO, MARS, ELITE,
BOUT++)
» Linear resistive modes: NIMROD, (PEST-3, M3D-C1)
» Nonlinear: NIMROD, (BOUT++, M3D-C1)
» Control/mitigation (MGI, RMP, ...): NIMROD, (MARS, ...)

@ EP physics
» Linear: NIMROD, (NOVA-K, M3D-K)
» Nonlinear: NIMROD, (M3D-K)
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CFETR baseline scenario from 1.5D integrated
transport simulations features deeply reversed
maghnetic shear and edge pedestal regions
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IWM: NIMROD calculations indicate the baseline
scenario linearly unstable to ideal (wall) MHD

mOdeS fOI" n — 3 - 10 [Banerjee et al. 2017, Cheng et al. 2017]
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IWM: NIMROD calculations show linear ideal
modes all localized near edge for n > 3

5.07 505
Perturbed Pressure Perturbed Pressure
407 n=3 4.0 Nn=10
28.39
i ] = y 56240414
-21.94 -4.369e+14
207 3 15.49 203 3.115e+14
' 9.036 1.860e+14
1.04 1.04
7 -2.584 7 6.054e+13
i -3.868 = -6.492e+13
y -10.32 -1.904e+14
1.04 v'_,,‘ -16.77 -1.04 _3.158e+14
2.04 : I-23'22 2.0 I'4-‘”39”4
1-29.68
L-5.667e+14
] Max: 28.39 £ Max: 5.624e+14
0 Min: -29.68 0 Min; -5.667e+14
4.0+ T T T T T T 1 4.0 T T T T T T 1
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 3.0 4.0 50 6.0 7.0 8.0 9.0 10.0

u]
]
I
ul
it

12N Ge




IWM: Linear growth rates of low-n (n < 3) ideal
MHD modes can be obtained from AEGIS
calculations [Han et al. 2017]
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@ The n = 3 ideal MHD mode critical wall position agrees with
NIMRQOD calculation.



IWM: Mode profiles from AEGIS calculations
indicate that unstable low-n (n = 2, 3) ideal MHD
modes remain localized near edge

n=2, Re - Fourier components of £, for ideal wall mode n=3, Re - Fourier components of ¢, for ideal wall mode
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@ The n = 3 ideal MHD mode profile agrees well with NIMROD
calculation.
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IWM: AEGIS calculations indicate n = 1 ideal mode
stable for designed wall location d/a=1.2

0n0=21 ideal mode growth rate vs. wall position
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IWM: Linear growth rates of ideal MHD modes
have been benchmarked among multiple major
MHD codes for CFETR [Li et al. 2017, Banerjee et al. 2017]
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RWM: n =1 RWM is unstable for the designed wall
location but can be stabilized by toroidal rotation

above a low threshold pen ez 2017
n=1 RWM growth rate vs. wall position
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TAE: CFETR baseline scenario found unstable to
EP-driven TAEs from NIMROD calculations uou etz 20
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TAE: EP-driven TAE instabilities analyzed in
NIMROD simulations
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@ Slowing-down EP distribution with 3, fraction of 0.2.
@ Global twisted mode structure characteristic of TAE and RSAE
(left: n=3;right: n=7).



TAE: NIMROD simulations find EP-driven TAE
instabilities in low n range
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@ TAE real frequencies (left) are located in the Alfvénic continuum
gap, consistent with analysis from NOVA-K (zou et a1 2017.

@ TAE growth rates (right) are peaked at n = 4.
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NIMEQ: Modification of pressure is up to 10%
when toroidal rotation Mach humber ~ 0.1
(frequency 8.0 x 1O4rad/3) [Li and Zhu 2017]
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@ Left: Pressure with and without toroidal flow.

@ Right: Relative change of pressure
(Puwith fiow — Puwithout fiow)/ Puwithout flow induced by toroidal flow.



TM: NIMROD nonlinear benchmark on double
helicity tearing in presence of poloidal flow
(ITPA'MHD JA2) [Yan and Zhu 2017]
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LM: Nonlinear plasma response to RMP of
tokamak in Rutherford regime from NIMROD
simulations [Zhu et al. 2017]
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@ RMP helicity (2, 1), amplitude range 10~* ~ 1073,

5.6

@ Nonlinear response simultion includes 6 toroidal Fourier modes.
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LM: Locked mode state of nonlinear plasma
response qualitatively agrees with theory ez 2om
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@ k- u profile evolution from theory (left, cylinder) and NIMROD
simulations (right, torus) similar.

@ Mode locking location (k - u = 0) inward of resonant surface in
simulation.



NTV: RMP can induce NTV torque in edge pedestal
to the order of NBI torque (N 1N/m2) [Yan et al. 2017]
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@ RMP helicity (2, 1), amplitude range 10~# ~ 10~3.
@ Fourier spectrums of perturbed magnetic field strength localized
and peaked around resonant surfaces (1,1) and (2,1).

@ NTV torque density profile peaked in edge pedestal region.



MGil: Initial distribution Neon gas injection
|Ocalized near edge (D"I'D) [Banerijee et al. 2017]
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MGiI: NIMROD simulation demonstrates Neon gas
injection leads to thermal quench (DIlI-D)
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MGiI: Radiation power density distribution during
TQ phase (DIII-D)
Radiation contour af 1=39.75 ms
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MGiI: During TQ phase magnetic flux surface lost
outside core region (DIII-D)




MGiI: Simulation demonstrates thermal quench
phase induced by lithium gas injection on EAST

[Banerjee et al. 2017]
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MGiI: During TQ phase magnetic flux surface lost
outside core region (EAST)
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MGil: Unstable 2/1 mode leads to disruption onset
(EAST)
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Fishbone: EP-driven 1/1, 2/2, and 3/3 modes on
HL-2A reproduced in NIMROD calculations o .20
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@ Mode structures twist
poloidally and extend radially.

@ Bfrac =
0.25(1,1),0.3(2,2),0.3(3, 3).




Fishbone: 1/1, 2/2, and 3/3 modes can be driven
unstable by increasing EP 5, (HL-2A)

normalized growth rate y74 versus S5,/
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@ Real frequency (left) and linear growth rates (right).

@ (1,1) and (2,2) kink mode first suppressed by 35, then become
fishbone instabilities at higher j3j,.

@ (3,3) mode are purely driven by EPs.



Summary and plan

@ The IWM (ELM), RWM, and TAE stabilities of CFETR baseline
scenario have been evaluated.

» IWM are mostly edge-localized (i.e. ELMs) instead of global (D.
Banerjee, S.-K. Cheng, R. Han).

» RWNMs could be stabilized with low toroidal rotation, even in
absence of other disspative stabilization mechanisms or feed-back
control schemes (R. Han).

» Both TAE and RSAE can be driven unstable with EPs (Y.-W. Hou)

@ Disruption-relevant MHD and EP studies are ongoing and planned

NIMEQ-flow and VDE (H.-L. Li)

TM/NTM (X.-T. Yan, Z. Chen)

LM, plasma response, and NTV (W.-L. Huang, X.-T. Yan, Z.-H. Li)
MGI mitigation (D. Banerjee)

Fishbone (Z.-H. Zou)
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