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Ongoing and planned MHD and disruption studies

MHD and EP analyses of CFETR baseline scenarios
I Ideal (wall) MHD modes (D. Banerjee, S.-K. Cheng, R. Han)
I RWM (R. Han)
I TAE/EPM (Y.-W. Hou)

Disruption-relevant MHD and EP studies
I NIMEQ-flow and VDE (H.-L. Li)
I TM/NTM (X.-T. Yan, Z. Chen)
I LM, plasma response, and NTV (W.-L. Huang, X.-T. Yan, Z.-H. Li)
I MGI mitigation (D. Banerjee)
I Fishbone (Z.-H. Zou)
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NIMROD is mainly used along with other major
codes for linear analysis and nonlinear
simulations of MHD and EP physics

MHD physics
I Linear ideal modes: AEGIS, NIMROD, (GATO, MARS, ELITE,

BOUT++)
I Linear resistive modes: NIMROD, (PEST-3, M3D-C1)
I Nonlinear: NIMROD, (BOUT++, M3D-C1)
I Control/mitigation (MGI, RMP, ...): NIMROD, (MARS, ...)
I ......

EP physics
I Linear: NIMROD, (NOVA-K, M3D-K)
I Nonlinear: NIMROD, (M3D-K)
I ......
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CFETR baseline scenario from 1.5D integrated
transport simulations features deeply reversed
magnetic shear and edge pedestal regions
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IWM: NIMROD calculations indicate the baseline
scenario linearly unstable to ideal (wall) MHD
modes for n = 3 − 10 [Banerjee et al. 2017, Cheng et al. 2017]
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IWM: NIMROD calculations show linear ideal
modes all localized near edge for n ≥ 3
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IWM: Linear growth rates of low-n (n ≤ 3) ideal
MHD modes can be obtained from AEGIS
calculations [Han et al. 2017]

The n = 3 ideal MHD mode critical wall position agrees with
NIMROD calculation.
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IWM: Mode profiles from AEGIS calculations
indicate that unstable low-n (n = 2,3) ideal MHD
modes remain localized near edge

The n = 3 ideal MHD mode profile agrees well with NIMROD
calculation.
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IWM: AEGIS calculations indicate n = 1 ideal mode
stable for designed wall location d/a = 1.2
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IWM: Linear growth rates of ideal MHD modes
have been benchmarked among multiple major
MHD codes for CFETR [Li et al. 2017, Banerjee et al. 2017]
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RWM: n = 1 RWM is unstable for the designed wall
location but can be stabilized by toroidal rotation
above a low threshold [Han et al. 2017]
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TAE: CFETR baseline scenario found unstable to
EP-driven TAEs from NIMROD calculations [Hou et al. 2017]

Upper: n = 1 − 4; Lower: n = 5 − 8
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TAE: EP-driven TAE instabilities analyzed in
NIMROD simulations

Slowing-down EP distribution with βh fraction of 0.2.
Global twisted mode structure characteristic of TAE and RSAE
(left: n = 3; right: n = 7).
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TAE: NIMROD simulations find EP-driven TAE
instabilities in low n range

TAE real frequencies (left) are located in the Alfvénic continuum
gap, consistent with analysis from NOVA-K [Zou et al. 2017].
TAE growth rates (right) are peaked at n = 4.
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NIMEQ: Modification of pressure is up to 10%
when toroidal rotation Mach number ∼ 0.1
(frequency 8.0 × 104rad/s) [Li and Zhu 2017]

Left: Pressure with and without toroidal flow.
Right: Relative change of pressure
(Pwith flow − Pwithout flow )/Pwithout flow induced by toroidal flow.
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TM: NIMROD nonlinear benchmark on double
helicity tearing in presence of poloidal flow
(ITPA-MHD JA2) [Yan and Zhu 2017]
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LM: Nonlinear plasma response to RMP of
tokamak in Rutherford regime from NIMROD
simulations [Zhu et al. 2017]
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RMP helicity (2,1), amplitude range 10−4 ∼ 10−3.
Nonlinear response simultion includes 6 toroidal Fourier modes.
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LM: Locked mode state of nonlinear plasma
response qualitatively agrees with theory [Zhu et al. 2017]
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Mode locking location (k · u = 0) inward of resonant surface in
simulation.
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NTV: RMP can induce NTV torque in edge pedestal
to the order of NBI torque (∼ 1N/m2) [Yan et al. 2017]
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RMP helicity (2,1), amplitude range 10−4 ∼ 10−3.
Fourier spectrums of perturbed magnetic field strength localized
and peaked around resonant surfaces (1,1) and (2,1).
NTV torque density profile peaked in edge pedestal region.
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MGI: Initial distribution Neon gas injection
localized near edge (DIII-D) [Banerjee et al. 2017]
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MGI: NIMROD simulation demonstrates Neon gas
injection leads to thermal quench (DIII-D)
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MGI: Radiation power density distribution during
TQ phase (DIII-D)
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MGI: During TQ phase magnetic flux surface lost
outside core region (DIII-D)
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MGI: Simulation demonstrates thermal quench
phase induced by lithium gas injection on EAST
[Banerjee et al. 2017]
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MGI: During TQ phase magnetic flux surface lost
outside core region (EAST)
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MGI: Unstable 2/1 mode leads to disruption onset
(EAST)
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Fishbone: EP-driven 1/1, 2/2, and 3/3 modes on
HL-2A reproduced in NIMROD calculations [Zou et al. 2017]

Mode structures twist
poloidally and extend radially.
βfrac =
0.25(1,1),0.3(2,2),0.3(3,3).
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Fishbone: 1/1, 2/2, and 3/3 modes can be driven
unstable by increasing EP βh (HL-2A)
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(1,1) and (2,2) kink mode first suppressed by βh, then become
fishbone instabilities at higher βh.
(3,3) mode are purely driven by EPs.
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Summary and plan

The IWM (ELM), RWM, and TAE stabilities of CFETR baseline
scenario have been evaluated.

I IWM are mostly edge-localized (i.e. ELMs) instead of global (D.
Banerjee, S.-K. Cheng, R. Han).

I RWMs could be stabilized with low toroidal rotation, even in
absence of other disspative stabilization mechanisms or feed-back
control schemes (R. Han).

I Both TAE and RSAE can be driven unstable with EPs (Y.-W. Hou)
Disruption-relevant MHD and EP studies are ongoing and planned

I NIMEQ-flow and VDE (H.-L. Li)
I TM/NTM (X.-T. Yan, Z. Chen)
I LM, plasma response, and NTV (W.-L. Huang, X.-T. Yan, Z.-H. Li)
I MGI mitigation (D. Banerjee)
I Fishbone (Z.-H. Zou)
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