
Collision Energy Exchange in the CEL-DKE
CTTS Meeting at APS-DPP, Portland, OR

E. Held A. Spencer J. Ji NIMROD Team

November 4, 2018



Electron Chapman-Enskog-like (CEL)-DKE in NIMROD

I Assume f = fMe +Fe with Fe = O(δ 2fMe)

I Write CEL-DKE in the �uid frame (Ramos, Phys Plasmas 17,
082502 (2010)) using s = v/vte and ξ = v‖/v variables:

∂Fe

∂ t
+ v‖b ·∇Fe −

1−ξ 2

2ξ
v‖b ·∇ lnB

∂Fe

∂ξ

+
v0

2
(b ·∇ lnn)[ξ

∂Fe

∂ s
+

1−ξ 2

s

∂Fe

∂ξ
]− s[ξb ·∇+

∂

∂ t
] lnv0

∂Fe

∂ s
= 〈C (f )〉

+

[
(
5

2
− s2)v‖b ·∇ lnT +

v‖
nT

b · [2
3

∇π‖−π‖∇ lnB−Fei ]

+2s2(
3

2
ξ
2− 1

2
)[
1

3
∇ ·u−bb ·∇u]+ 2

3nT
(s2− 3

2
)[b ·∇q‖−q‖b ·∇ lnB−Gei ]

+
2

3eB
s2(

3

2
ξ
2− 1

2
)[(

5

2
− s2)(∇ lnB−2κ)+∇ lnn] ·∇T ×b

+
4

3eB
(
s4

2
− 5

2
s2+

15

8
)(∇ lnB+κ) ·∇T ×b

]
fMe



Spitzer thermalization problem using CEL approach.

I Test accuracy of electron/ion collisional energy exchange.

∂Fe

∂ t
− s

2

∂ lnT

∂ t

∂Fe

∂ s
= C (Fe , fMe)+C (fMe ,Fe)

+C (Fe , fMi )+C (fMe , fi )+
2

3nT
(
3

2
− s2)Gei fMe

Here accurate evaluation of e/i collision operator and its moment, Gei ,
are needed:
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Drives in CEL-DKE can have complicated s-dependence.

I Collocation approach in speed:
I solve DKE at set of quadrature points in s,
I derivatives done using F = ∑
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dsw(s)LiLj = δij

I Most �drives" in CEL-DKE have simple form: polynomial-in-s

* exp(−s2):
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I But, s-dependence in C (fMe , fi ) has large response at low s:
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Collisional energy and momentum exchange

I Large response in C (fMe , fi ) at low electron speed present in

functions De0(s) and De1(s).
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Here E(si ) and E ′(si ) are the error function and its derivative and De0 and

De1 control collisional energy and momentum exchange responses, respectively.



De0 and De1 behavior with w = exp(−s2) on s ∈ [0,∞] .

ns=8 ns=48



Spitzer thermalization recovered for exp(−s2) weighting.

I Accurate thermalization obtained for ns = 48.



De0 and De1 behavior with w = De0 on s ∈ [0, root(De0)].

ns1=2 (w(s) =De0), ns2=6 (w(s) = exp(−s2)) ns=48, w = exp(−s2)



Spitzer thermalization recovered for low-s, De0(s) weighting.

I 8 speed collocation points:

2 at low s (w = De0), 6 at high-s (w = exp(−s2)).



Conclusions

I Quadrature schemes in s with De0(s) weight at low s and

exp(−s2) at high s helpful for accurate thermalization.

I Re�nement of this approach needed for simultaneously

capturing collisional momentum exchange response at low s?


