Update on NTM Modeling Using Heuristic Closures

E. C. Howell, J. R. King, S. Kruger

Tech-X Corporation

CTTS Meeting November 4, 2018

This work is supported by the US DOE FES

E. C. Howell, J. R. King, S. Kruger

Modeling of NTMs

3 Heuristic Closures

4 Conclusions and Future Work

NTMs are a Concern for ITER and Beyond

- Ideal MHD limits are relatively well-understood: β_N ≤ 4l_i
- Rotating tearing modes result in a soft β limit: $\beta_N \lesssim 2l_i$
- Locked modes are a leading cause of disruptions

P. de Vries, NF 2011

NTM Modeling is Computationally Challenging due to their Slow Evolution and Kinetic Nature

- Evolution spans multiple ELM and sawtooth cycles
 - τ_{ntm} : 100 1000ms
 - $\tau_{elm}: 5 20 ms$
 - τ_{saw} : 100ms
- Neoclassical effects govern island evolution
 - Self-consistent modeling requires solving 5D DKE

F. Turco NF 2010

Our Numerical Simulations do not Model the Experimental Control Systems

- NTM control is routine on large experiments
 - ECCD, entrainment and spin-up
 - Disruption threshold depends on MHD and control system
- Experiments are preemptively terminated when large amplitude locked modes are observed
 - Decrease I_p , turn off heating
 - Changes to actuators alters dynamics
 - Muddies validation

Our Approach to Studying NTM Disruptions

- Construct experimentally relevant model equilibria
 - Start from approximate DIII-D ITER baseline discharge
 - Modify equilibria to remove extraneous dynamics
- Use heuristic closures to model neoclassical stresses
 - Heuristic closures model dominant neoclassical effects
 - Use model parameters to scale island width
- Investigate how locked NTM cause disruption

2 Model Equilibria

3 Heuristic Closures

Model Equilibria are Created to Focus on NTMs

- Raise $q_0 > 1$ to avoid sawteeth
- Widen pedestal and add E_r well to stabilize edge modes
- Increase λ locally to increase Δ'

Proportional-Derivative Feedback System Implemented for Shape Control

• External currents are updated using a PD controller:

$$\delta I_j^n = \alpha_p J_{ji}^{(k)\sim 1} e_i^n + \alpha_d J_{ji}^{(k)\sim 1} \left(e_i^n - e_j^{n-1} \right)$$

Shape control points: $\{r_i\}$ Flux on control surface: ψ_0 Square error: $e_i^2 = w_i (\psi (r_i) - \psi_0)^2$ Jacobian: $J_{ij} = \frac{\partial e_i}{\partial I_j} \equiv U \Sigma V^T$ SVD pseudo-inverse: $J^{(k) \sim 1} \equiv V \Sigma^k U^T$

²J. D. Hanson NF 2009

Example Case Illustrates the Performance of the Feedback System

- 100 control points specify the $\hat{\psi} = 0.95$ surface
- Provides vertical and radial stability
- Performance is sensitive to the number of singular values
 - A cutoff tolerance of 10^{-4} works well

Modifications Enable Creation of ITER-Like Equilibria

Equilibrium Pressure(Pa)

I_p	$0.958 \mathrm{MA}$
ϵ	0.33
κ	1.83
q_0	1.32
q_{95}	5.2
β_N	1.85
β_N/l_i	2.31

Equilibria is n = 1 Tearing Unstable

Numerical Implementation and Testing of Heuristic Closures

1 Introduction

2 Model Equilibria

3 Heuristic Closures

4 Conclusions and Future Work

Neoclassical Effects Modify MHD Through the Stresses (and Heat Fluxes)

$$\begin{array}{lll} \text{Continuity:} & \frac{\partial n}{\partial t} + \vec{v} \cdot \nabla n = n \nabla \cdot \vec{v} \\\\ \text{Momentum:} & \rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} \right) = \vec{J} \times \vec{B} - \nabla p - \nabla \cdot \vec{\Pi}_{\nu} - \nabla \cdot \vec{\Pi}_{i} \\\\ \text{Temperature:} & \frac{n}{\Gamma - 1} \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T \right) = -nT \nabla \cdot \vec{v} - \nabla \cdot \vec{q} + Q \\\\ \text{Faraday's Law:} & \frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} \\\\ \text{Ohm's Law:} & E = -\vec{v} \times \vec{B} + \eta J - \frac{1}{ne} \nabla \cdot \vec{\Pi}_{e} \end{array}$$

Heuristic Closures Model the Neoclassical Stresses

$$\nabla \cdot \vec{\Pi}_{i} = nm_{i}\mu_{i} \left\langle B^{2} \right\rangle \frac{\vec{v} \cdot \vec{e}_{\Theta}}{\left(\vec{B} \cdot \vec{e}_{\Theta}\right)^{2}} \vec{e}_{\Theta}$$
$$\nabla \cdot \vec{\Pi}_{e} = -\frac{nm_{e}\mu_{e}}{ne} \left\langle B^{2} \right\rangle \frac{\vec{J} \cdot \vec{e}_{\Theta}}{\left(\vec{B} \cdot \vec{e}_{\Theta}\right)^{2}} \vec{e}_{\Theta}$$

• Heuristic closures model dominant neoclassical effects³

- Poloidal ion flow damping
- Enhancement of polarization current
- Bootstrap current

³Gianakon, POP 9, 2002

E. C. Howell, J. R. King, S. Kruger Modeling of NTMs

Neoclassical Enhancement of the Polarization Current is Used to Test the Ion Stress

S	10^{5}
Pr_m	1
$ u_{visc}/\chi_{\perp} $	1
k_{\parallel}/k_{\perp}	10^{8}
μ_e	0

- The ion stress damps poloidal flows associated with tearing modes
- Damping increases inertia by a factor of $\left(1 + C\frac{\mu_i}{\gamma}\right)$
- Growth rate is reduced when $\mu_i \gtrsim \gamma_{MHD}$

Conclusions/Future Work

- Modifications enable the generation of experimentally relevant equilibria
 - New feedback system enables shape control
 - Equilibria designed to focus on NTM physics
- Heuristic closures are used to model neoclassical stresses
 - Tests of the closures are ongoing
- Modifications will be used to investigate the mechanisms by which NTMs cause disruptions