VDE simulations with M3D-C¹

S.C. Jardin, Isabel Krebs, Nate Ferraro

Center for Tokamak Transient Simulations Nov 4, 2018

Portland, Oregon

Acknowledgments:

D. Pfefferle K. Bunkers J. Artola C. Sovinec M. Hoelzl F. Villone C. Clauser

Outline

• Features of the M3D-C¹ code

• Benchmark Studies with NIMROD, JOREK, CarMaONL

• ITER VDE Studies

Outline

• Features of the M3D-C¹ code

Benchmark Studies with NIMROD, JOREK, CarMaONL

ITER VDE Studies

3D Extended MHD Equations in M3D-C¹

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \bullet (n\mathbf{V}) &= \nabla \bullet D_n \nabla n + S_n \\ \frac{\partial \mathbf{A}}{\partial t} &= -\mathbf{E} - \nabla \Phi, \quad \mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{J} = \nabla \times \mathbf{B}, \quad \nabla_{\perp} \bullet \frac{1}{R^2} \nabla \Phi = -\nabla_{\perp} \bullet \frac{1}{R^2} \mathbf{E} \\ nM_i(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \bullet \nabla \mathbf{V}) + \nabla p &= \mathbf{J} \times \mathbf{B} - \nabla \bullet \mathbf{\Pi}_i + \mathbf{S}_m \end{aligned}$$

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} &= \frac{1}{ne} (\mathbf{R}_e + \mathbf{J} \times \mathbf{B} - \nabla p_e - \nabla \bullet \mathbf{\Pi}_e) - \frac{m_e}{e} \left(\frac{\partial \mathbf{V}_e}{\partial t} + \mathbf{V}_e \bullet \nabla \mathbf{V}_e \right) + \mathbf{S}_{CD} \\ \frac{3}{2} \left[\frac{\partial p_e}{\partial t} + \nabla \bullet (p_e \mathbf{V}) \right] &= -p_e \nabla \bullet \mathbf{V} + \frac{\mathbf{J}}{ne} \bullet \left[\frac{3}{2} \nabla p_e - \frac{5}{2} \frac{p_e}{n} \nabla n + \mathbf{R}_c \right] + \nabla \left(\frac{\mathbf{J}}{ne} \right) : \mathbf{\Pi}_e - \nabla \bullet \mathbf{q}_e + Q_\Delta + S_{eE} \\ \frac{3}{2} \left[\frac{\partial p_i}{\partial t} + \nabla \bullet (p_i \mathbf{V}) \right] &= -p_i \nabla \bullet \mathbf{V} - \mathbf{\Pi}_i : \nabla \mathbf{V} - \nabla \bullet \mathbf{q}_i - Q_\Delta + S_{iE} \\ \mathbf{R}_e &= \eta ne \mathbf{J}, \quad \mathbf{\Pi}_i &= -\mu \left[\nabla \mathbf{V} + \nabla \mathbf{V}^\dagger \right] - 2(\mu_e - \mu)(\nabla \bullet \mathbf{V}) \mathbf{I} + \mathbf{\Pi}_i^{GV} \\ \mathbf{R}_e &= (\mathbf{B} / B^2) \nabla \bullet \left[\lambda_h \nabla \left(\mathbf{J} \bullet \mathbf{B} / B^2 \right) \right], \quad Q_\Delta = 3m_e(p_i - p_e) / (M_i \tau_e) \end{aligned}$$

Blue terms are 2-fluid terms. Also, now have impurity and pellet models for disruption mitigation. NOT reduced MHD.

M3D-C¹ uses unique 3D high-order finite elements

- M3D-C¹ uses high-order curved triangular prism elements
- Within each triangular prism, there is a polynomial in (R,φ,Z) with 72 coefficients
- The solution *and* 1st *derivatives* are constrained to be continuous from one element to the next.
- Thus, there is much more resolution than for the same number of linear elements

k+1 φ k R

Error ~ h⁵

M3D-C¹ has been extended to 3 regions for RW*

*Ferraro, et al. , Phys Plasma23 056114 (2015)

 $R(L_0)$

Outline

• Features of the M3D-C¹ code

• Benchmark Studies with NIMROD, JOREK, CarMaONL

ITER VDE Studies

Benchmark M3D-C¹, NIMROD & JOREK

- Compare results of all three codes for the same VDE case
 - Based on NSTX VDE discharge #139536*
 - Axisymmetric rectangular resistive wall that all codes can handle
- Linear, 2D axisymmetric nonlinear & 3D nonlinear simulations
 - Compare evolution, wall currents & forces

Linear VDE growth vs. η_{wall} depends on T_{edge}

- Small η_{wall} , small T_{edge} : VDE growth rate $\sim \eta_{wall}$
- Large η_{wall} , large T_{edge} : VDE slowed down by response currents in open field line region

Linear VDE growth vs. η_{wall} depends on T_{edge}

Toroidal current density eigenfunctions

- Small η_{wall} , small T_{edge} : VDE growth rate $\sim \eta_{wall}$
- Large η_{wall}:, large T_{edge}:
 VDE slowed down by response currents in open field line region

Linear benchmark with NIMROD

	M3D- <i>C</i> ¹	NIMROD
Poloidal Direction	Tri. C ¹ Reduced ₁ Quintic FE	High. Order quad <i>C</i> ⁰ FE
Toroidal Direction	Hermite Cubic C ¹ FE	Spectral
Magnetic Field	$\mathbf{B} = \nabla \psi \times \nabla \varphi - \nabla_{\perp} f' + F \nabla \varphi$	$\mathbf{B} = B_r \hat{R} + B_z \hat{Z} + B_\varphi \hat{\varphi}$
Velocity Field	$\mathbf{V} = R^2 \nabla U \times \nabla \varphi + \omega R^2 \nabla \varphi + R^{-2} \nabla_{\perp} \chi$	$\mathbf{V} = V_r \hat{R} + V_z \hat{Z} + V_{\varphi} \hat{\varphi}$

Coupling to Conductors

same matrix

Separate matrices w interface

Linear benchmark with NIMROD (preliminary)

- Growth rates differ by ~ 30%
- Slight differences in diffusion parameters

I. Krebs K. Bunkers, C. Sovinec

Linear benchmark with JOREK-STARWALL

- Comparison of linear phase of 2D nonlinear simulations
 - To avoid negative temperatures from developing, we use an offset in resistivity calculation so open-field-line resistivity is not constrained by T_{edge} : $\eta = \eta_{spitzer} (T_e - T_{off})$

8 orders variation in resistivity from center to wall !!!

- Differences between JOREK & M3D-*C*¹/NIMROD models:
 - JOREK has full MHD model, but uses *reduced MHD* for VDEs
 - No ideal wall BCs at domain boundary
 - Only normal velocity component vanishes at resistive wall

Progress on VDE benchmark between M3D-C¹ & JOREK

- linear phase of 2D nonlinear simulations

Outline

• Features of the M3D-C¹ code

Benchmark Studies with NIMROD, JOREK, CarMaONL

• ITER VDE Studies

2D nonlinear ITER VDE simulation

- Based on standard 5.3 T / 15 MA ITER scenario
- Used <u>realistic parameters</u> for *wall resistivity*, *plasma resistivity*, *plasma mass* (no scaling: 1,150,000 τ_A !!)
- 2D benchmark with CarMaONL in progress
 - Comparison of 2D evolution & wall currents/forces
 - with ITER first wall as resistive wall
 - with first wall as boundary & vessel wall as resistive wall
- Coupling M3D-C¹ & CARIDDI (3D conducting structures)
 - 2D M3D-C¹ simulations
 - 3D M3D-C¹ simulations

I. Krebs

F. Villone

/p/m3dc1/nferraro/data/test/mesh/iter_mesh

Poloidal unstructured mesh used in ITER calculation

L/R time from simulation without plasma

2D nonlinear Hot ITER VDE simulation with single wall

Poloidal Magnetic Flux

2D nonlinear ITER Hot VDE simulation

2D nonlinear ITER Hot VDE simulation

Z-position of magnetic axis well fit by linear growth rate until start of the thermal quench

$$Z_{mag} - Z_0 = .027 \exp\left(\frac{t(ms)}{170}\right)$$

Thermal Quench at $t = 643 \text{ ms} (q_a = 2)$

Thermal quench: $\rightarrow \kappa_{\perp}$ increased to $10^6 \text{ m}^2/\text{s so that}$ $T_e(0) \sim 25 \text{ eV in the}$ presence of Ohmic

heating

Vertical Force on Wall

Vertical wall force @ t=646 ms

Halo current at time of maximum force

2D nonlinear Cold ITER VDE simulation with single wall

Comparison of 2D nonlinear Hot and Cold ITER VDE

Halo width self-consistently determined by $\kappa_{\parallel}/\kappa_{\perp}$

→ Halo width & temperature at LCFS determined by $T_{edge} \& \kappa_{\parallel}/\kappa_{\perp}$

Dependence of Maximum Vessel Force on Post-TQ Te

Higher post-TQ electron temperature led to slower current decay and larger vertical force on vessel.

Ongoing and Future Work

• Benchmark Studies with NIMROD, JOREK, CarMaONL

• Continue these to 2D NL and 3D NL

• ITER VDE Studies

- 2D parameter studies on $\kappa_{\parallel}/\kappa_{\perp}$, TQ time
- Thick Vessel with varying resistivity
- Couple to Cariddi (3D conducting structures)
- Fully 3D calculations (with SPI)