Disruption Mitigation Modeling Status and Plan

L.L. Lao¹ for the CTTS Disruption Mitigation Team*

CTTS APS Meeting Portland, Oregon

November 4, 2018

*CTTS Disruption Mitigation Team:

N. Bosviel², N. Eidietis^{1&}, N.M. Ferraro³, J.L. Herfindal^{4&}, E. Hollmann^{5&}, V,A, Izzo^{6&}, S.C. Jardin³. C.C. Kim⁷, M. Lehnen^{8&}, Y.Q. Liu¹, A. Loarte^{8&}, B..C. Lyons¹, J.T. McClenaghan¹, P.B. Parks¹, R. Samulyak², and D. Shiraki^{4&}

¹General Atomics
²Stony Brook University
³Princeton Plasma Physics Laboratory
⁴Oak Ridge National Laboratory
⁵UCSD
⁶Fiat Lux
⁷SLS2 Consulting
⁸ITER Organization
[&]No-Cost Collaborator

CTTS DM Objective: Develop, verify, and validate 3D models for disruption mitigation by SPI for future tokamak design and optimization

• Original 2017-2019 proposed activities

Disruption Mitigation by Shattered Pellets

Year 1	Construct SPI plume model and develop tracking algorithms
	Develop 3D local pellet ablation model for FronTier-MHD and perform single-pellet tests
	Perform SPI scoping and sensitivity studies using NIMROD with an existing analytic SPI model
	Implement full ionization/recombination/radiation model in M3D-C1
Year 2	Implement pellet debris plumes into FronTier-MHD and test tracking algorithms.
	Perform SPI simulations and validation tests using FronTier-MHD and DIII-D experimental data
	Develop analytic kinetic heat flow models for use with NIMROD and M3D-C1
	Complete SPI scoping studies using NIMROD and M3D-C1 with an existing analytic SPI model.

• Revised plan

- Focus on PiC based and Lagrangian Particle (LP) SPI models
- FronTier-MHD used mostly as a stand alone test for benchmarking analytic ablation formulas for use with NIMROD and M3D-C1 SPI simulations

Work supported by US DOE under SciDAC DE-SC0018109, DE-FC02-04ER54698, DE-FC02-04ER54698, and GA ITER Contract

Significant Progress Made toward CTTS Disruption Mitigation Goals Since the Last APS Meeting

- Resolved a number of NIMROD coding issues to allow accurate accounting of radiation power and energy balance.
- Implemented analytical SPI ablation model into M3D-C1 and successfully completed an axisymmetric verification benchmark between NIMROD and M3D-C1 for simulations of impurity-induced disruption mitigation.
- Completed first test of NIMROD PiC-based SPI model against DIII-D SPI experiments
 - Variation of SPI radiated energy and TQ time with Ne quantity
- Started testing of NIMROD PiC-based SPI model against ITER operation scenarios
 - ITER simulations share similar features with DIII-D but much more challenging
- Started exploring NIMROD/LP and M3D-C1/LP code couplings
- Developing a kinetic pellet plasma cooling model for use with NIMROD and M3D-C1

2017/10/22

100

Eidietis

- Variation in SPI radiated energy with Ne quantity
 - Ne/D₂ mixture, total pellet size constant
- Variation in SPI assimilation with injection angle
 - Relative strength of ballistic versus MHD mixing
- Interpretation of dual SPI experiments
 - Multiple pellets appear to not sum directly

Radiated energy (MJ)

A NIMROD PiC-Based SPI Model Has Been Developed and Tested against DIII-D Data

- Modeled as spherical point_particle source with 2 poloidal and toroidal Gaussians moving at constant velocity
- Spherical SPI fragments ablate independently with analytical ablation formula from Parks
- After deposition, ionization and radiation are based on KPRAD

5

 Flexible and easy to modify for other applications such as shell pellet, and pellet fueling

NIMROD Simulations Are Based on a Kinetic EFIT Reconstruction of a DIII-D SPI Discharge

Tightly converged 257x257 kinetic EFIT reconstruction

Impurity Validation Scan Shows Good Agreement with DIII-D Experiments

Kim APS 2018

CTTS Disruption Mitigation Modeling DIII-D SPI Experiments Modeling Needs

2017/10/22

Eidietis

- Variation in SPI radiated energy with Ne quantity
 - Ne/D₂ mixture, total pellet size constant
- Variation in SPI assimilation with injection angle
 - Relative strength of ballistic versus MHD mixing
- Interpretation of dual SPI experiments
 - Multiple pellets appear to not sum directly

NIMROD Simulated Thermal –Quench Times Also Consistent with DIII-D Measurements

NIMROD used to simulated SPI induced TQ for ITER baseline and hybrid scenarios with varying impurity contents

Ne[kP a.m³]	Ne:D2	lp [MA]	r_frag [mm]	S (x10 ⁶)	Kperp [m²/s]	Kpara [m²/s]	kin_vis [m²/s]	mesh	∆t [µs]	^τ τQ [ms]	Burnt/t otal
0.5	0:1	15	1.71	1.85	10	1010	2x104	96x96	0.2	8	125/125
1	0:1	15	2.15	1.85	102	107	5x10 ³	96x96	0.5	5	75/125
0.5	10:1	15	4.42	1.85	10	1010	2x104	64x72	0.2	4.5	65/125
0.5	10:1	15	4.42	18.5	10	1010	2x104	64x72	0.2	4.5	65/125
0.5	10:1	15	4.42	1.85	10	1010	2x10 ²	64x72	0.2	4.5	75/125
0.5	10:1	15	3.51	1.85	10	1010	2x104	64x72	0.2	4.5	150/250
0.5	1.5:1	15	2.51	1.85	102	107	5x10 ³	96x96	0.5	>6	125/125
0.5	0:1	12.5	1.71	1.62	10 ²	107	5x10 ³	96x96	0.5	>5	125/125

- Fixed plasma resistivity and thermal conductivity coefficients
- 25 PiC markers at V=500 m/s
- n=0-5 toroidal modes

Numerical tests show that variation of assumed plasma resistivity weakly affects TQ phase

- Mixture of 0.5 kPa-m³ neon + 5 kPa-m³ D₂
- 15 MA ITER baseline scenario
- Vary plasma resistivity by factor of 10 →

Nearly no effect on evolution of plasma thermal energy
Nearly no effect on evolution of radiated thermal energy
Some (albeit small) effect on plasma current decay during TQ

Y.Q. Liu | CTTS | Oct 2018

Twice larger amount of pure neon SPI reduces TQ time by ~35% for ITER 15 MA baseline scenario

- 0.5 kPa-m³ neon 🗲
 - 8 ms TQ
 - 100% ablation of injected pellet during TQ
- 1 kPa-m³ neon →
 - 5 ms TQ
 - ~64% ablation
- TQ time traces not very sensitive to assumed plasma resistivity & viscosity

```
Y.Q. Liu | CTTS | Oct 2018
```

CTTS Disruption Mitigation 2018-2019 Plan

- Continue development of NIMROD PiC-based SPI model and validation against DIII-D data and higher fidelity simulations
 - Multiple injectors, deposition shape dependence, plume representation, dissipation parameters, parallel thermal conduction, disrupting target plasma
- Benchmark Frontier-MHD, LP, NIMROD, M3D-C1, and PAM pellet ablation models
- Start NIMROD and M3D-C1 3D benchmark
- Perform M3D-C1 production runs/scoping studies for pellet mitigation
- Explore coupling algorithms to integrate NIMROD/LP and M3D-C1/LP
- Continue development of kinetic pellet plasma cooling model and start testing against DIII-D data
- Test more realistic shell pellet ablation model into NIMROD and test model against DIII-D data

Core Impurity Deposition with Inverted Temperature Profile Demonstrated in DIII-D Recent Shell-Pellet Experiment

Thin Diamond-Shell Carries Payload of Boron Dust

 Inverted T_e indicative of desired inside-out mitigation to increase radiative energy fraction, prevent RE seed formation, plus a slower current quench to reduce stress in the surrounding vacuum vessel

