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Introduction

e Visco-resistive MHD NIMROD computations are being applied to
understand asymmetric VDE physics.

* Thermal quench
e Current spike

e Current quench
* Wall forcing

* In analogy to experimental VDE studies, our computations for an
idealized configuration consider forced vertical displacement.

 On JET, VDE studies used programmed displacement [Riccardo,

et al., PPCF 52, 124018].



Parameters and closure relations define the MHD model.

Magnetic diffusivity depends on temperature.
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Thermal conduction and viscous stress are anisotropic with fixed coefficients.
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Artificial particle diffusivities are intended to be small.
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NOTE: the equations used in this application have been normalized.
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We separate the problem into two coupled subdomains.

* Plasma responses are modeled in the central subdomain.

* The outer subdomain produces the vacuum magnetic response
outside the resistive wall.

e Resistive diffusion through the wall is at an intermediate time-scale
between 7, and 7,
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The computations start from an up-down symmetric
equilibrium.
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Contours of poloidal flux and pressure for

Safety factor and pressure profiles. A ) .
y P P the initial state. Border is the resistive wall.

* Forced VDEs are modeled by removing current from the upper divertor
coil (outside the resistive wall).
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Results of two nonlinear 3D computations are compared.

1. One models the effect of turning the upper divertor-coil off.

* Plasma density and temperature, B from plasma current, and B from the
upper divertor coil become part of the initial conditions.

 Rest of external coil fields is held fixed.
 Toroidal resolution evolves Fourier harmonics O<n <21 .

e Then=1andn=2harmonics have small fixed field errors; others have
initial perturbations.

2. The second case holds all coil fields fixed, so there is no vertical forcing.



Current

General Evolution: Distinct behavior results in each 3D
computation and in a 2D case.

The 3D computation with forcing produces a thermal quench (TQ) that is
faster than the current quench (CQ).
The forced 3D computation has the largest current bump.
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The 3D computation without forcing exhibits a minor disruption

without a CQ.
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MHD activity develops and evolves throughout the 3D
* The computed MHD activity does not display a simple saturation
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The dominant mode changes quickly with wall contact in
the 3D case with forced displacement.

* Plots at right are at the
times indicated on the
previous slide.

* Resistive dissipation of the
edge suppresses an initial
m = 4 linear instability and
excites m = 3.

e Contact with the wall
accelerates a transition to
m=2.
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As the dominant mode changes from m =3 tom = 2, loss
of flux surfaces initiates the thermal quench.

* Poincaré surfaces of section overlaid on pressure show the topology
changes that lead to energy loss.

* Flux surfaces are not recovered in this case with forced displacement.




In the 3D computation without forcing, the initial growth is
slower and takes longer to saturate.

* Resistive dissipation of the edge again excites MHD activity.
* This process is muted without the vertical displacement into the wall.
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Magnetic energy fluctuations (1sn<21)
are again dominated by n = 1. Vertical

lines indicate t=1062 and t=3600.
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The transition from m = 3 to m = 2 also occurs without
vertical forcing, but the result is just a minor disruption.
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* Maximum pressure remains at 94% of its initial value through t=1700; by
t=3600 it has decreased to 27%.
* Central closed flux surfaces are recovered after thermal energy is lost.

* Thereis no CQ through the end of the computation.




Current Spike: 3D spreading of current density that
increases /, can be described as a dynamo effect.

The parallel current density IZ: e \%

<J, |>/<B> and poloidal flux 02 0.5]
distributions broaden when Ip :' o
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1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
R R

Correlated fluctuations of flow velocity and magnetic field induce changes in
spatially averaged B.

* Averaged Faraday’s law with resistive-MHD E:

= (B) =~V x[(n1)~(V)x(B) +E

* MHD dynamo effect from astrophysics, RFP, and spheromak literature is_ e
Ef = —<\~7 X b> [e.g., Moffat (1978) and Schnack, et al. Phys. Fluids 28, 321]. |




dlp/dt becomes positive when power transferred by E; is large.

* Low-frequency Poynting theorem for <B>2 evolution is

1.65
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Right side includes fluctuation-induced -E ; -(J).

In the core, maximum ‘Ef‘ exceeds <77><J¢> by more than 10.
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Blue contours show <E;>.<J> <0, red is >0,
overlaid with poloidal flux contours.



“Relaxation” of parallel current density is not as
uniform as it appears in plots of averaged field.
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Wall Forces: Forces with a thin-wall model can be
computed from integrating stress over the outer surface.

* Pustovitov’s computation [Nucl. Fusion 55, 113032] is the natural one to apply
with thin-wall modeling.

* |t assumes that the wall and plasma form an electrically isolated system.
* Plasma inertial force is negligible on 7, timescale.

e Cartesian components of Lorentz force over any object are F; = éj - [JxBdVol.
- With a thin wall, JAx =K as |J| =, but

Fj=u5'$ds- | BB-15%/2|-&; holds.
e Splitinto integrals over inner and outer surfaces of the wall:
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* Also, -F,, acts on plasma, hence F;,, — 0 for negligible plasma inertia.
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Our computations are consistent with Pustovitov’s analysis.

 We compute both F

out

 Computed results have Fin, ~ 1
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theta

Local forcing may exceed expectations from the magnitude of

net forces.
* Force perunitareais Lﬁ-A(
over the surface. Ho

2

BB—IB?) , Where A means the jump

e Spatially local forcing may cancel when integrated over the surface.
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Conclusions

Visco-resistive MHD-based computations with NIMROD
reproduce important qualitative features:

* Relatively fast thermal quench

* Current bump then relatively slow decay (even in the
absence of a RE modeling)

Current bump occurs after TQ has begun, and dynamo effect is
relevant.

Wall-force check supports Pustovitov’s approach to computing
net force.

Stresses that contribute to net force may be concentrated.
* Local forcing may cause more damage than net force.
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