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Abstract

The Chapman-Enskog like electron drift kinetic equation* provides kinetic closure of 
fluid equations and extends to the long mean free path regime of magnetized plasmas. 
In this work we discuss the application of a continuum numerical solution to this 
equation to provide closure for parallel heat flux in NIMROD. Accuracy is improved by 
expressing the equation in velocity coordinates using pitch-angle and speed normalized 
by the thermal speed. This leads to a tight coupling of temperature, T, to kinetic 
distortion, F, and demands a careful semi-implicit time advance for large time steps. 
Results are obtained from two integration schemes applied to a simultaneous advance 
of T and F: 1) Picard iteration, and 2) Newton's method. We compare the computational 
efficiency of both approaches. Additional parallelism was recently developed 
parallelizing the preconditioning step in the linear solver over speed collocation points 
in the velocity domain. We present the parallel scaling performance of this 
development. Using NIMROD we explore the effects of particle trapping on thermal 
transport in toroidal geometry in the presence of magnetic islands. 

*J. J. Ramos, Phys Plasmas 17, 082502 (2010).
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Objective: Include kinetics in NTM simulations

Continuum kinetic tools in NIMROD:

• The Chapman-Enskog-like (CEL) 
drift-kinetic equation can be solved 
simultaneously with fluid equations to 
provide closures such as parallel heat-flux.

• The CEL method partitions the velocity 
distribution function into a Maxwellian and 
kinetic distortion in a self-consistent way 
that is preserved over time. Taking fluid 
moments of the kinetic distortion checks 
this partitioning.

Research Objective: Understand challenges of 
solving the fluid + CEL kinetic system

• Strong nonlinear coupling between fluid 
quantities and kinetic distortion

• Scaling velocity by thermal speed

• Implicit advance for large time steps

Start with a simplified coupling: thermal transport with kinetic parallel closure:
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A simple model of a magnetic island

Initial linear T profile flattens across island

Kinetic electron parallel thermal transport in 
slab island geometry

•

• Boundary condition: periodic in Z direction
• Use fluid closure for ions
• Use steady state solution with fluid parallel 

heat flux as initial condition
• Take large implicit time steps to rapidly 

find new steady state with kinetic parallel 
heat flux
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Continuum kinetics in NIMROD 
used to study thermal transport

• Temperature equation

• Two options for closures (fluid or kinetic):

1) Fourier conduction  (using mixed finite element formulation)

2) Kinetic heat flux 

Chapman-Enskog-Like (CEL) DKE for kinetic distortion, F

(red terms have T dependence) where 
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Recent developments in 
NIMROD’s contiuum kinetics

• Newton’s method for fully nonlinear, implicit F/T solves
• Full preconditioner
• New block preconditioner
• Parallelism over speed collocation points
• Reusing preconditioner when appropriate
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Discretization uses NIMROD’s FEM
and novel velocity representation*

NIMROD’s spatial discretization is FE (poloidally) + Fourier (toroidally):

Pitch-angle discretization is FE:

where                   are solved at a set of collocation points in Speed

*E. D. Held, et al, Phys Plasmas 22, 032511 (2015).

Lagrange or GLL
polynomials
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T & F are coupled for semi-implicit advance
with both centered at the same time

• s-blocks are tailored to free streaming, bouncing 
and pitch-angle scattering

• If constructing full preconditioner, speed index
combines with pitch-angle index as a
”vector component”

• Can be extended to other fluid variables

Fluid quantities prepend to
distribution function solution vector
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The linear operator’s toroidal-blocks
can be written in the following matrix form

A few preconditioning strategies implemented:

1)  Full preconditioner includes all terms

2)  Block Jacobi inverts       &       s-blocks
  excluding:
✗ off-diagonal collision operator terms
✗ thermodynamic drives
✗ s-derivative
✗ heat-flux in temperature equation

3)  New block preconditioner uses      ,       &
  s-blocks is similar, but includes:
✔ heat-flux in temperature equation

Temperature equation

Drift-kinetic equation

F coupling
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New block preconditioner has some advantages

Computational advantages:

• Inverse easily written by hand
(back substitution)

• Like successive over relaxation 
(used for toroidal preconditioning), 
only diagonal blocks need be factored

• Easy modification to existing 
preconditioning subroutine

• Factoring diagonal blocks can be 
skipped over multiple time steps, while 
off-diagonal blocks are inexpensive to 
update every Newton iteration
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• ns+1 groups of processors used (each group 
having as many as running serial-in-s)

• Each group of processors is assigned a 
speed index, 0 ≤ s

i
 ≤ ns

• Group s
i
 = 0 computes first block and factors

• Each group s
i 
≥ 1 computes a single 

off-diagonal block and a single diagonal block 
and factors

• Each group owns a piece of the vector being 
preconditioned and the result

• Data gets passed from the s
i 
≥ 1 groups to the 

s
i 
= 0 group (back substitution).

• Communication is similar to successive over 
relaxation

Block decomposition of matrix
facilitates parallelism

ns + 1 processor groups
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New block preconditioner results
in fewer GMRES iterations

Example 1ms run
• 32x32 poloidal grid
• 4th order polynomial FE basis
• 3 ξ cells, 3rd order polynomials
• ns=4 speed collocation points
• starting from fluid steady state
• taking 100x10μs time steps

Block 
Jacobi

New 
Approach

Total GMRES its 
on 1st Newton it 2328 590
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Large implicit time steps are possible 

Some relevant time scales

transit time ~1μs

collision time ~10μs

NTM in quasi-
stationary state ~200ms*

locking dynamics ~15ms*

time locked before 
disruption ~300ms*

ns/ξ poly degree 4/3 7/4

time step 10μs 10μs

simulation time 1ms 1ms

MPI Tasks 64 512

s-parallelism No Yes

wall clock time 1.9hrs 2.8hrs

*R. Sweeney, W. Choi, R. LaHaye, et al, Nucl. Fusion 57, 016019 (2017).
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Convergence in velocity space to be investigated
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Upcoming work

• Cleanup s-parallelization for smaller memory footprint
• Implement additional parallelization in pitch-angle

– Domain decomposition (can collision operator be done implicitly?)
– Static condensation in pitch-angle

• Add artificial anisotropic diffusion
• Introduce electron-ion collisional energy exchange
• Adaptive time step
• Use developed code in a tearing mode simulation with evolving
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