
M3D-C1 JET simulation Progress Report

H. Strauss

• simulation of JET shot 71985

• implemented modifications of M3DC1

• toroidal dealiasing

• thin wall
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Simulation of JET shot 71985 - jφ

(a) (b) (c)

(d) (e) (f)

Current density jφ at (a) t = 2τx where τx = 103τA. (b) t = 4τx (c) t = 6τx (d) t =
8τx (e) t = 10τx (f) t = 12τx and τwall ≈ τx/2. parameters: η0 = 1.e−5, etamax =
1.e− 2, etawall = 1.e− 3, µ0 = 1.e− 5, µmax = 1.e− 2, κ⊥ = 1e− 2, κ‖ = 1.
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Simulation of JET shot 71985 - Te

(a) (b) (c)

(d) (e) (f)

Electron temperature Te at (a) t = 2τx where τx = 103τA. (b) t = 4τx (c) t = 6τx
(d) t = 8τx (e) t = 10τx (f) t = 12τx and τwall ≈ τx/2.
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Time history
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(b)

(a) total current in simulation Ip, total current in experiment I71985, vertical displace-
ment in simulation Zp, vertical displacement in experiment Z71985,

(b) KE, 100β, components of sideways Fx, Fy in MN.
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Code modifications

• pre programmed voltage for CQ modelling

• input ηmin and ηmax rather than Temax, Temin

• restart at specified previous timestep

• to do: modify resistivity profile in the wall to reduce resistivity gradient at the
plasma wall boundary

• Taylor Galerkin upwind diffusion, helps stabilize advection, used in M3D

∂T

∂t
= . . .+ µ∇ ·

vv

|v|
· ∇T (1)
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Dealiasing

During TQ there can be loss of equilibrium, MHD turbulence, which generates very
fine scales.

Viscosity and hyper viscosity can damp the highest wavenumber modes, but will have
too much damping at lower wavenumbers.

Dealiasing truncates the toroidal Fourier spectrum, removing the highest 1/3 of the
modes. [ S. Orszag, J. Atmos. Sci 28 1074 (1971)] The lower modes are unchanged.

Very effective in M3D.

wavenumber viscous hypervisc dealias
kmax 1 1 1
kmax/2 0.25 0.0625 0
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Toroidal Dealiasing

An element is bounded toroidally by planes φn, φn−1, where φn − φn−1 = ∆φ =
2π/N. A function V has values at the ends of the element Vn, Vn−1 and V ′

n, V
′
n−1,

where the prime is the φ derivative. There are N such elements. This makes the
elements C1 continuous. Take the discrete Fourier transform

Ṽk =

N∑

n=1

exp[ik(n− 1)∆φ]Vn (2)

truncate, and back transform

Vm =

N/3∑

k=0

Ck exp[−ik(m− 1)∆φ]Ṽk (3)

Here the maximum mode number is N/2, and 2/3 of the maximum mode number is
N/3, where Ck = 2/N, except C0 = 1/N.
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Toroidal Dealiasing

There is no need for FFTs. The dealiasing operation can be written

V ∗
m =

N∑

n=1

OmnVn (4)

where matrix Omn is precomputed,

Omn = Re{

N/3∑

k=0

Ck exp[ik(n−m)∆φ]} =

N/3∑

k=0

Ck cos[k(n−m)∆φ] (5)

The V ′
n values can be treated the same way,

V ∗′
m =

N∑

n=1

OmnV
′
n (6)

This determines smoothed values of Vn, V ′
n at the ends of the elements.
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Higher order toroidal dealiasing

Each element end has 2 degrees of freedom, Vn and V ′
n, so resolution could be

improved by interpolating to the midpoint of each element, using the unique Hermite
cubic polynomials of the elements. If V (x) is a cubic polynomial, x = (φ−φn)/∆φ,

V (x) = Vn(1−3x2+2x3)+V ′
n(x−2x2+x3)+V ′

n+1(−x
2+x3)+Vn+1(3x

2−2x3)
(7)

Then for x = 1/2, Vn can be defined at the midpoints of the elements,

Vn+1/2 = (Vn+1 + Vn)/2+ (V ′
n − V ′

n+1)/8 (8)

and the dealiasing is done over an array of 2N points. The resolution is better: now
2N/3 harmonics are discarded, leaving 4N/3 harmonics, twice as many as before.
To restore V ′ back solve (8)

V ′
n+1 = V ′

n +4(Vn + Vn+1)− 8Vn+1/2 (9)

To ensure periodicity,
∑

n

Vn + Vn+1 − 2Vn+1/2 = 0 (10)

To eliminate an arbitrary constant from the choice of V ′
1 in (9) require that

∑

n

V ′
n = 0 (11)
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Example
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(b)

f(z), f’(z), g(z), g’(z) (a) Method 1, low resolution (b) Method 2, high resolution Fig.(a)
uses Method 1 on a mesh of 8 elements. The function f(φ) is

f(φ) = cos(φ) + cos(3φ)/3 (12)

df

dφ
= − sin(φ)− sin(3φ) (13)

In the plots g and dg/dφ are the dealiased version of f, df/dφ. Method 2 is illustrated
in Fig.(b). The initial functions are

f(φ) = cos(φ) + cos(3φ)/3+ cos(6φ)/6 (14)

df

dφ
= − sin(φ)− sin(3φ)− sin(6φ) (15)
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Thin resistive wall

A similar approach can be used for a thin resistive wall. For toroidally symmetric wall,
the Green’s function [GRIN, Pletzer] can be Fourier analyzed

∂ψ̃j,k

∂n
=

∑

l

Gj,l,kψ̃l,k (16)

where

ψ̃l,k =

N∑

n=1

exp[ik(n− 1)∆φ]ψl,n (17)

Taking the reverse transform

∂ψl,m

∂n
=

∑

m,j

Gl,m,j,nψj,n (18)

where indices j, l are poloidal points on the wall and m,n are toroidal locations,

Gl,m,j,l = Re{
∑

k

Gl,m,k exp[ik(j − l)∆φ]} (19)

The matrix Gl,m,j,l only needs to be computed once.

There is no need for FFTs, no vacuum field solve at each time step.
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Summary

• simulation of JET shot 71985

– agreement with experiment is improving

• Code modifications

• modify resistivity profile in the wall to reduce resistivity gradient at the plasma

• dealiasing without FFT

• Thin resistive wall without FFT

• goal: to make AVDE simulations more robust
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