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Negative triangularity tokamak is beneficial for
divertor design [M. Kikuchi et al, APPC (2014)]

Larger power handling area for the divertor Sdiv ∼ 2πRdiv (F∆)
(Rδ<0

div > Rδ>0
div ). ∆ is effective width of heat flux, F is the

enhancement factor due to SF flux expansion.
For example, heat flux can be 4 ∼ 7 times smaller.
Larger space for engineering design to mitigate the damage to
divertor caused by particle and energy loads.
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Turbulence and transport can be reduced in
negative triangularity discharge compared to
positive triangularity one [M. E. Austin et al, APS (2017)]

However, the β limit in negative triangularity plasma is often thought
relatively low (e.g. βN ∼ 2) [S. Yu. Medvedev et al, Nucl. Fusion (2015)].
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Recent ideal MHD stability study shows that
negative triangularity L-mode with high bootstrap
current fraction can achieve higher β than H-mode
in positive triangularity case [L.-J. Zheng et al, Sherwood (2018)]

In this work, we use NIMROD to:
Compare with previous ideal
MHD stability study;
Extend this study to
non-ideal, nonlinear
scenarios.
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DIII-D gfile g171421.03850 is used to generate
simulation domain and equilibrium profiles
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n = 1 linear growth rate scales as γ ∝ η0.49, contour
plot shows (1,1) mode structure (No vacuum
region, ohms=’mhd’, uniform resistivity)
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Figure: Viscosity is kept to be a constant so that Prm = 1 at the point marked
in the left plot.
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When S = 105, poincare plots evolution shows the
flux surface distortion and magnetic reconnection
(nonlinear simulation, n = 0− 1)
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When S =∞, n = 1 linear growth rate is nearly
zero, no obvious flux surface distortion or
reconnection is observed (nonlinear simulation,
n = 0− 1)

      t=1.33e-2s
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This negative triangularity configuration can be stable in ideal MHD
limit.
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We further include external mode in calculation
(self-similar wall, ohms=’2fl’, Spitzer resistivity,
high viscosity in vacuum region)
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Mode structure characteristic of ELMs

n=1 n=2 n=3
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Two types of n = 1 mode structures have been
found in the calculation

Figure: Left: No vacuum region, uniform resistivity; Right: Self-similar wall
located at b = 1.2, Spitzer resistivity.
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Three kinds of triangularities based on DIII-D
configuration adopted for comparison
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Equilibrium profiles used in analysis are DIII-D
L-mode type
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Critical wall positions for n = 1 mode from
NIMROD consistent with AEGIS results

NIMROD simulation
AEGIS simulation [L.-J. Zheng et al,

Sherwood (2018)]

For a fixed wall position, β limit in negative triangularity configuration is
lowest, but acceptable
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(2,1) mode structures are shown in three
triangularity cases

From left to right: δ = −0.4, δ = 0, δ = 0.4
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With similar equilibrium profiles, n = 1 internal
mode stability is evaluated for three triangularities
(S = 105, no vacuum region)

0 0.2 0.4 0.6 0.8 1

p

0

0.05

0.1

0.15

0
p

=-0.4

=0.0

=0.4

0 0.2 0.4 0.6 0.8 1

p

-6

-5

-4

-3

-2

-1

q

=-0.4

=0.0

=0.4

Left: pressure profiles; Right: safety factor profiles

11/04/2018 19 / 28



(2,1) unstable mode and magnetic island are
found only in negative triangularity case. Positive
and zero triangularity cases are stable
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Negative triangularity more unstable for resistive internal mode as well.
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Advanced scenarios of DIII-D L-mode profile can
be obtained from reduced Ohmic and enhanced
bootstrap current fractions [L.-J. Zheng et al, Sherwood (2018)]
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Both AEGIS and DCON show that positive triangularity becomes
unstable above Troyon limit.
However low n kink modes remain stable in negative triangularity
case when β is above Troyon limit.
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NIMROD calculation on advanced scenario with
positive triangularity is consistent with AEGIS
results

n=1 n=2 n=3

Comparison of critical wall positions (NIMROD/AEGIS):
1.43/1.4(n = 1), 1.52/1.47(n = 2), 1.28/1.4(n = 3)
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However, negative triangularity case is found n = 1
linearly unstable in NIMROD analysis (inconsistent
with AEGIS/DCON)

n = 1 linear growth rate seems independent on: η/µ0 (0− 7m2/s);
viscous coefficient (0− 0.7m2/s); mx/my (36/36− 144/144).
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Linear growth rate of n = 1 internal modes
changes with β non-monotonically
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One case looks special: β = 3.51%.
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Characteristics of this case: edge pedestal, strong
reversed shear, bootstrap current near edge
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This case may provide a possibility for profile optimization.
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Summary

NIMROD analysis on DIII-D type L-mode profiles for different
triangularities:

I Consistent n = 1 critical wall positions with AEGIS calculation;
I For a fixed wall location, β limit in negative triangularity

configuration is the lowest, but acceptable;
I Comparison among different triangularities with similar equilibrium

profiles shows negative triangularity the most unstable.
NIMROD analysis on advanced L-mode scenario (with high
bootstrap current fraction) profiles:

I Consistent with AEGIS results in positive triangularity configuration;
I But not in negative triangularity case (still under investigation);
I There is a possibility for profile optimization.
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