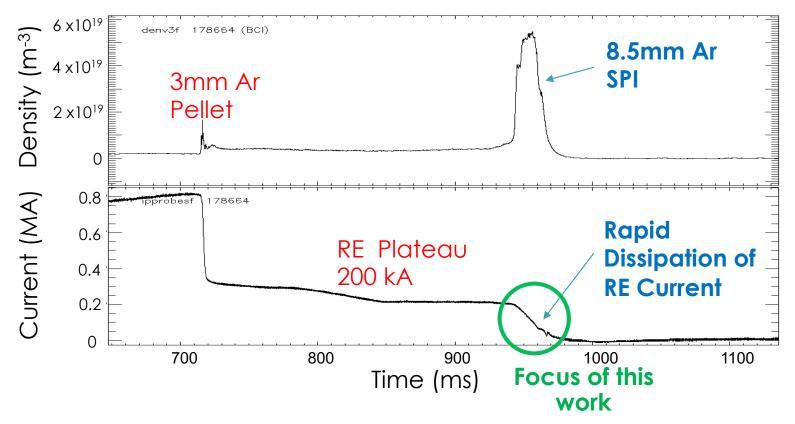


Modeling and Simulation of Runaway Electron Dissipation by Impurity Injection Using KORC

M.T. Beidler¹


D. del-Castillo-Negrete¹, D.A. Spong¹, L. Baylor¹, D. Shiraki¹, M.R. Cianciosa¹, N.M. Ferraro², S.C. Jardin²

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Argon SPI into RE beam on DIII-D shot 178664 shows rapid dissipation of the RE current

- Ar SPI has been used into a RE beam and shows the ability to collisionally dissipate the RE current on a 20-30 ms time scale
 - Ar bound electrons and free electrons from ionization scatter REs
 - Approximately 15% assimilation rate of SPI

Main Results

Developed KORC for verification and validation of RE dissipation models

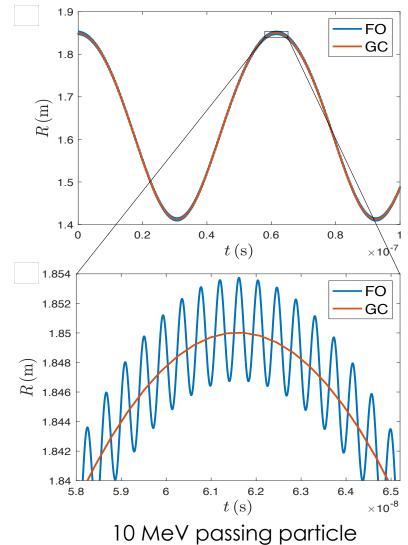
- RGC model that interpolates general magnetic field
- Monte Carlo Coulomb collisions with bound electron models
- Spatio-temporal partially-ionized and free electron density model and evolving electric field

Correct modeling of RE dissipation time scale requires:

- Bound electron model [e.g. Hesslow et al., PRL (2017)]
- Spatio-temporal "penetrating ring" density model
- Inductive electric field generated by slowing down collisions
 - Self-consistent model of E_{ind} presently being developed

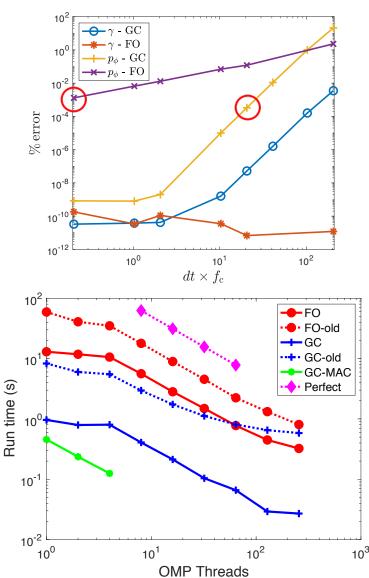
Coupling of KORC and M3D-C1 is underway

- FO calculations use Fusion-IO M3D-C1 fields and can be used with a synchrotron emission synthetic diagnostic
- RGC calculations presently developed for axisymmetric fields



Relativistic guiding center (RGC) equations are implemented in KORC

 RGC system of equations evolved with Cash-Karp 5th order Runge-Kutta


$$\frac{d\mathbf{X}}{dt} = \frac{1}{\mathbf{b} \cdot \mathbf{B}^*} \left(e\mathbf{E} \times \mathbf{b} + \frac{m_e \mu \mathbf{b} \times \nabla B + p_{\parallel} \mathbf{B}^*}{m_e \gamma_{GC}} \right),
\frac{dp_{\parallel}}{dt} = \frac{\mathbf{B}^*}{\mathbf{b} \cdot \mathbf{B}^*} \cdot \left(e\mathbf{E} - \frac{\mu \nabla B}{\gamma_{gc}} \right), \quad \mu = \frac{|\mathbf{p} - p_{\parallel} \mathbf{b}|^2}{2m_e B} = \frac{p_{\perp}^2}{2m_e B},
\mathbf{B}^* = q\mathbf{B} + p_{\parallel} \nabla \times \mathbf{b}, \quad \gamma_{gc} = \sqrt{1 + \left(\frac{p_{\parallel}}{m_e c}\right)^2 + \frac{2\mu B}{m_e c^2}}$$

- Tao, Chan, and Brizard, POP (2007)
- For static magnetic fields
- Evaluate analytic or general fields with PSPLINE interpolation routines
 - Cubic spline interpolation for (possibly 3D) fields or potentials
 - Advances on KORC-GC which uses nested flux surfaces in Boozer coordinates

RGC equations of motion can be accurately integrated more rapidly than FO

- Primary accuracy metrics are energy and toroidal canonical momentum for axisymmetry
 - Single particle calculations evaluate axisymmetric analytical field for 1 ms
 - FO accuracy requirement is gyro-orbit
 - RGC accuracy requirement is particle drifts and parallel dynamics
- HPC optimization to reduce OpenMP synchronization overhead and increase vectorization
 - Strong scaling shown for field interpolation
 - Modest gains for FO
 - Over 20x faster for RGC

Monte Carlo Coulomb collision operator valid for thermal and relativistic particles

 Stochastic differential equation (SDE) for Coulomb collision operator

$$dp = \left[-C_F + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 C_A \right) \right] dt + \sqrt{2C_A} dW_p,$$

$$d\eta = \frac{C_B}{p^2} \cot \eta dt + \frac{\sqrt{2C_B}}{p} dW_{\eta}$$

- dW is a Weiner process satisfying $< dW >= 0, < (dW)^2 >= dt$
- Transport coefficients C_B , C_A , C_F are pitch-angle scattering, parallel diffusion, and slowing down

$$C_B = \frac{p^2 \nu_D^{ei}}{2} + \frac{\nu_D^{ee}}{2} = \frac{\Gamma_{ei}}{2v} Z_{\text{eff}} + \frac{\Gamma_{ee}}{2v} \left[\text{erf} \left(\frac{v}{v_{th}} \right) - \psi \left(\frac{v}{v_{th}} \right) + \frac{1}{2} \left(\frac{v_{th}v}{c^2} \right)^2 \right]$$

$$C_A = \frac{p^2 \nu_{\parallel}^{ee}}{2} = \frac{\Gamma_{ee} \psi\left(\frac{v}{v_{th}}\right)}{v}, \ C_F = \frac{p \nu_S^{ee}}{2} = \frac{\Gamma_{ee} \psi\left(\frac{v}{v_{th}}\right)}{T_e}$$
$$- \Gamma_{ee,ei} = \frac{n_e e^4 \ln \Lambda_{ee,ei}}{4\pi \epsilon_0^2}, \ \psi(x) = \frac{\text{erf}(x) - x \, \text{erf}'(x)}{2x^2}$$

- General forms from Papp et al., NF (2011)
- Singularity in C_B as $v \to 0$
- Coulomb logarithms for small angle collisions from Hesslow et al., PRL (2017) valid at relativistic limit

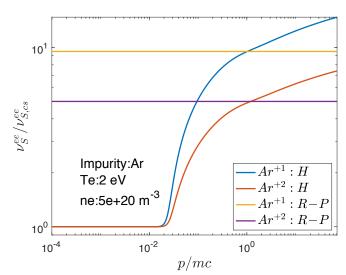
$$\ln \Lambda_{ee} = \ln \Lambda_0 + \frac{1}{5} \left\{ 1 + \left[2(\gamma - 1)c^2 / v_{th}^2 \right]^{5/2} \right\},$$

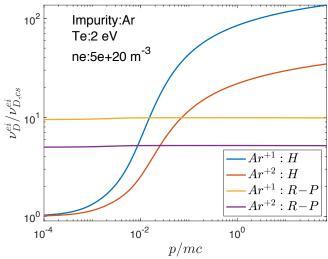
$$\ln \Lambda_{ei} = \ln \Lambda_0 + \frac{1}{5} \left[1 + (2\gamma v / v_{th})^5 \right],$$

$$\ln \Lambda_0 = 14.9 - \frac{1}{2} n_e (10^{20} \,\mathrm{m}^{-3}) + \ln T \,(\mathrm{keV})$$

 dt subcycled at a different rate than orbit iterations

Bound electron models for partially-ionized impurities greatly increase collisionality

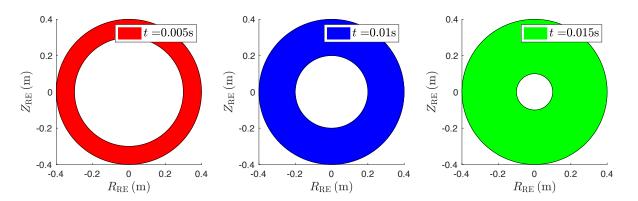

- Bound electron effects incorporated into v_s^{ee} and v_D^{ei} in Hesslow et al., *PRL* (2017)
- Inelastic collisions slow down particles through $v_{\rm S}^{ee}$
 - Hesslow (Bethe stopping-power):

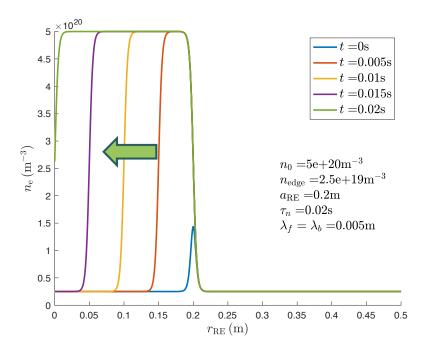

$$\nu_S^{ee} = \nu_{S,cs}^{ee} \left\{ 1 + \sum_j \frac{n_j}{n_e} \frac{Z_{0j} - Z_j}{\ln \Lambda_{ee}} \left[\frac{1}{5} \ln(1 + h_j^5) - \beta^2 \right] \right\}, \ h_j = p \sqrt{\gamma - 1} / I_j$$

- I_j is mean excitation energy of impurity species j
- Z_{0j} is fully ionized impurity charge Rosenbluth & Putvinski (R-P): $\nu_S^{ee} = \nu_{S, cs}^{ee} \left(1 + \sum_j \frac{n_j}{n_e} \frac{Z_{j0} Z_j}{2}\right)$
- Elastic collisions with ions contribute to pitch angle scattering through ν_D^{ei}
 - Hesslow (Born approximation):

$$\nu_D^{ei} = \nu_{D,cs}^{ei} \left(1 + \frac{1}{Z_{\text{eff}}} \sum_j \frac{n_j}{n_e} \frac{g_j}{\ln \Lambda_{ei}} \right), \ g_j = \frac{2}{3} (Z_{0j}^2 - Z_j^2) \ln(y_j^{3/2} + 1) - \frac{2}{3} \frac{(Z_{0j} - Z_j)^2 y_j^{3/2}}{y_j^{3/2} + 1}, \ y_j = p\bar{a}_j \quad \frac{1}{2} \frac{10^4}{3} \frac{10^4}{2} \frac{10^4}{3} \frac{10^4}{3$$

- \bar{a}_{i} is normalized effective ion scale length for impurity charge state
- R-P: $\nu_D^{ei} = \nu_{D,cs}^{ei} \left(1 + \sum_{i} \frac{n_j}{n_e} \frac{Z_{j0} Z_j}{2} \right)$




Spatio-temporally evolving electron density critical for modeling dissipation

- Recent JET experiments indicate penetrating ring of high electron density as SPI plume interacts with RE beam
- Ad hoc model implemented into KORC to simulate penetrating ring n_e evolution

$$n_e(r_{\rm RE}, t) = \frac{n_0 - n_{\rm edge}}{4} \left[1 + \tanh\left(\frac{r_{\rm RE} - a_{\rm RE}(1 - t/\tau_n)}{\lambda_f}\right) \right] \times \left[1 + \tanh\left(\frac{-(r_{\rm RE} - a_{\rm RE})}{\lambda_b}\right) \right] + n_{\rm edge}$$

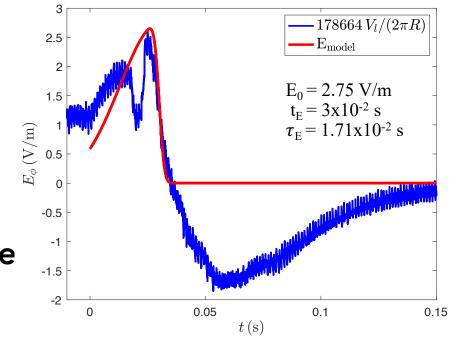
- Both free electron density and impurity density use same model
 - Assume %100 assimilation of SPI
- Consistent with Ware pinch mechanism due to poloidal magnetic and inductive toroidal electric fields

Synchrotron radiation and toroidal electric field acceleration included through Cash-Karp method

• Landau-Lifshitz representation of Lorentz-Abraham-Dirac radiation reaction force

$$\mathbf{F}_{\mathrm{R}} = \frac{1}{\gamma \tau_{R}} \left[(\mathbf{p} \times \mathbf{b}) \times \mathbf{b} - \frac{1}{(m_{e}c)^{2}} (\mathbf{p} \times \mathbf{b})^{2} \mathbf{p} \right], \ \tau_{R} = 6\pi \epsilon_{0} (m_{e}c)^{3} / (e^{4}B^{2})$$

Written as equivalent SDE


$$\frac{dp_{\parallel}}{dt} = -\frac{p_{\parallel}(1 - \cos^2 \eta)}{\tau_R} \left(\gamma - \frac{1}{\gamma} \right),$$

$$\frac{d\mu}{dt} = -\frac{2\mu}{\tau_R} \left[\gamma (1 - \cos^2 \eta) + \frac{\cos^2 \eta}{\gamma} \right]$$

- Small contribution for RE dissipation
- Model toroidal electric field by fitting skewed Gaussian to 178664 loop voltage

$$E_{\phi}(t) = E_0 \exp\left[-\frac{(t - t_E)^2}{2\tau_E^2}\right] \frac{1 + \operatorname{erf}\left[-\frac{10(t - t_E)}{\sqrt{2}\tau_E}\right]}{2}$$

- Self-consistent E_{ϕ} presently in development

Main Results

Developed KORC for verification and validation of RE dissipation models

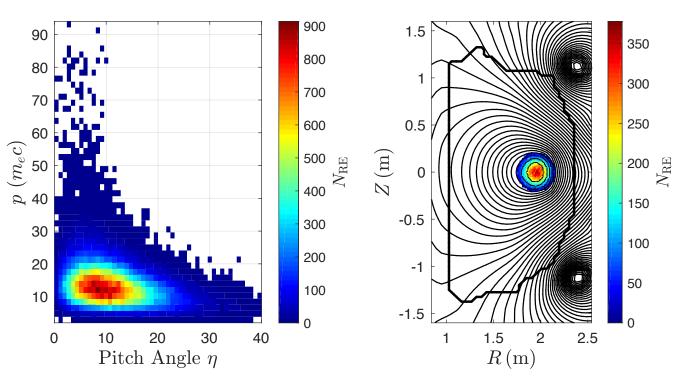
- RGC model that interpolates general magnetic field
- Monte Carlo Coulomb collisions with bound electron models
- Spatio-temporal partially-ionized and free electron density model and evolving electric field

Correct modeling of RE dissipation time scale requires:

- Bound electron model [e.g. Hesslow et al., PRL (2017)]
- Spatio-temporal "penetrating ring" density model
- Inductive electric field generated by slowing down collisions
 - Self-consistent model of E_{ind} presently being developed

Coupling of KORC and M3D-C1 is underway

- FO calculations use Fusion-IO M3D-C1 fields and can be used with a synchrotron emission synthetic diagnostic
- RGC calculations presently developed for axisymmetric fields



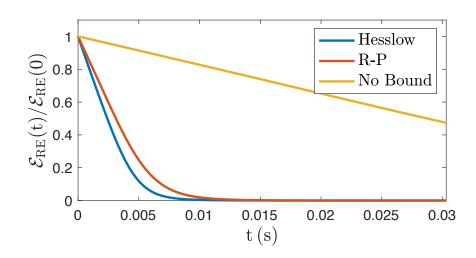
Initial conditions for simulations have RE beam centered at magnetic axis of DIII-D shot #178664

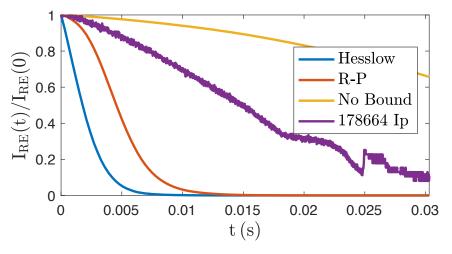
- JFIT reconstruction at $t_0 = 942.17 \text{ ms}$
 - Interpolate ψ_p and all first and second order derivatives at each particle location to evaluate RHS of RGC equations

• 10⁵ sampled REs

- Employ Metropolis-Hastings algorithm
- Energy distribution inferred from DIII-D [Hollmann et al., POP (2015)]
- n_e centrally peaked around 5x10¹⁹ m⁻³ falling to 2x10¹⁹ m⁻³ at edge
- T_e relatively flat at 1.5 eV

Bound electron collisions play significant role in RE dissipation

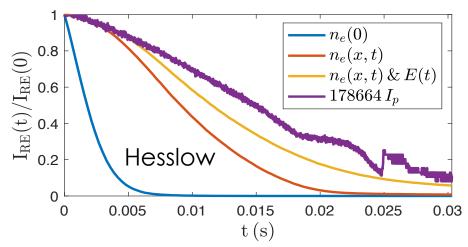

RE beam energy and current calculated as

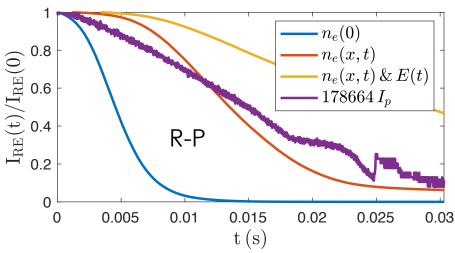

$$\mathcal{E}_{\mathrm{RE}}(t) = m_e c^2 \sum_{i}^{N_p} \gamma_i \mathcal{H}_{\mathrm{RE},i}(t),$$
 $I_{\mathrm{RE}}(t) = e \sum_{i}^{N_p} v_{\parallel,i} \mathcal{H}_{\mathrm{RE},i}(t),$

$$I_{\text{RE}}(t) = e \sum_{i}^{N_p} v_{\parallel,i} \mathcal{H}_{\text{RE},i}(t),$$

$$\mathcal{H}_{\mathrm{RE},i}(t) = \begin{cases} 1 & \text{if } p_i(t) > m_e c \\ 0 & \text{if } p_i(t) < m_e c. \end{cases}$$

- REs hitting first wall also excluded
- Simulations with flat, constant $n_e = 5 \times 10^{20} \text{ m}^{-3}$
- Dissipation time scale requires bound electron physics

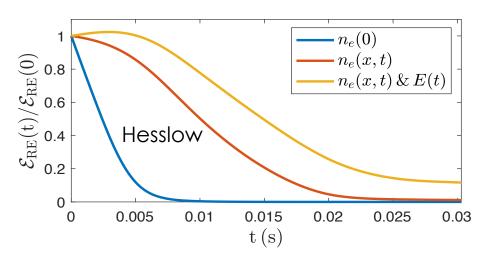


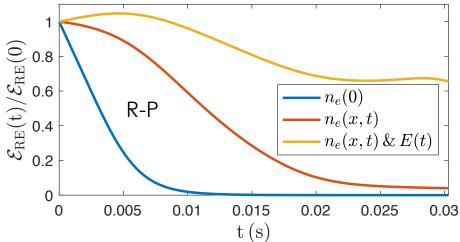


Spatio-temporal density profile and electric field evolution needed for recovering accurate RE dissipation

 Regardless of bound electron model, spatio-temporal density profile and electric field evolution are dominant drivers of RE current dissipation

 KORC framework can be easily adapted to more complete bound electron models as they become available





RE beam energy dissipation is qualitatively similar to current dissipation

- Time evolution of RE beam current can be measured experimentally, but critical to know energy evolution
- Energy takes longer to dissipate because it is insensitive to pitch angle dispersion
 - Electric field initially accelerates REs

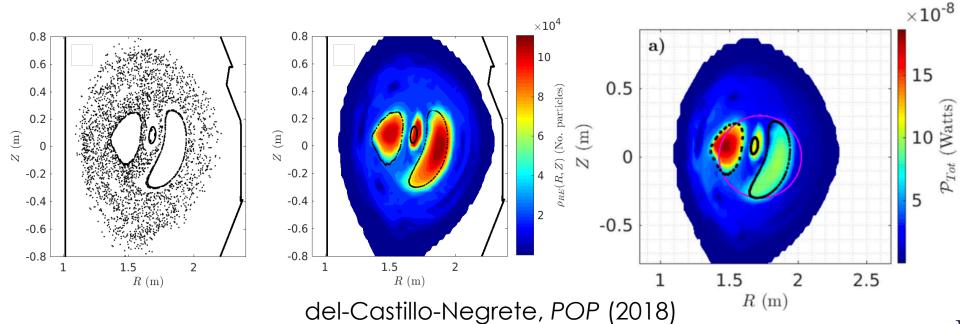
Main Results

Developed KORC for verification and validation of RE dissipation models

- RGC model that interpolates general magnetic field
- Monte Carlo Coulomb collisions with bound electron models
- Spatio-temporal partially-ionized and free electron density model and evolving electric field

Correct modeling of RE dissipation time scale requires:

- Bound electron model [e.g. Hesslow et al., PRL (2017)]
- Spatio-temporal "penetrating ring" density model
- Inductive electric field generated by slowing down collisions
 - Self-consistent model of E_{ind} presently being developed


Coupling of KORC and M3D-C1 is underway

- FO calculations use Fusion-IO M3D-C1 fields and can be used with a synchrotron emission synthetic diagnostic
- RGC calculations presently developed for axisymmetric fields

Previous SCREAM-CTTS activities include trace-particle coupling between KORC and NIMROD

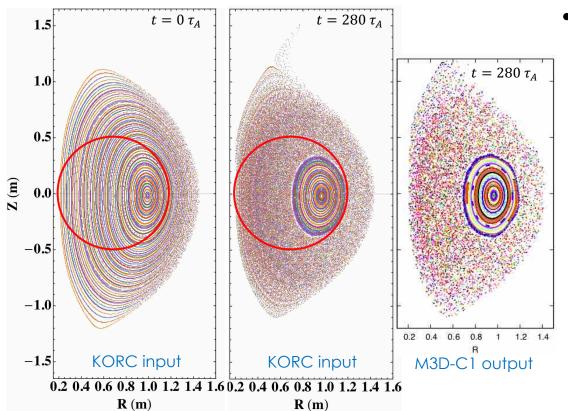
- FO calculations initialized from NIMROD simulations of DIII-D rapid shutdown scenario with MGI/SPI [Izzo et al., NF (2011)]
- REs confined in islands, lost from stochastic region
- Synchrotron emission (SE) synthetic diagnostic shows increased signal on HFS due to pitch angle dependence

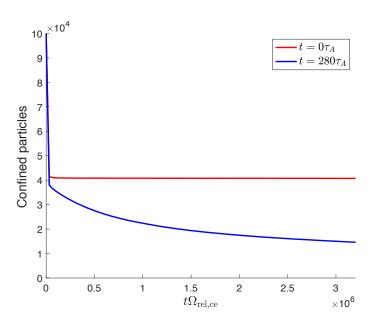
Efforts to couple KORC and M3D-C1 presently focus on two development pathways

KORC FO calculations require field information

- Mark Cianciosa has been iterating with Nate Ferraro to adapt the Fusion-IO API for KORC field interpolation
- Presently, precomputing fields with Fusion-IO then interpolating with PSPLINES yields best performance
- FO calculation outputs can be used as inputs for synchrotron emission synthetic diagnostic

KORC RGC calculations require field and gradient information

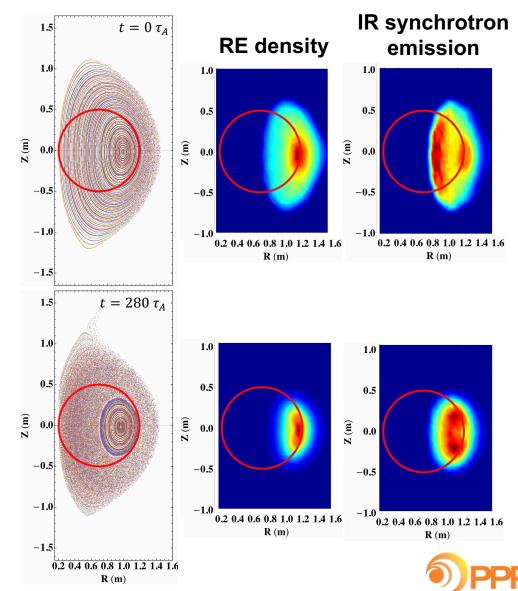

- Accuracy of orbits is highly sensitive to input field fidelity, and even more so when field gradients are needed
- 2D and 3D calculations have been performed
 - Use the M3D-C1 solution field ψ for 2D, derived field \vec{B} for 3D
 - PSPLINES are used to calculate first and second order derivatives

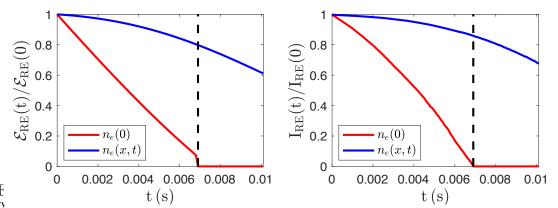


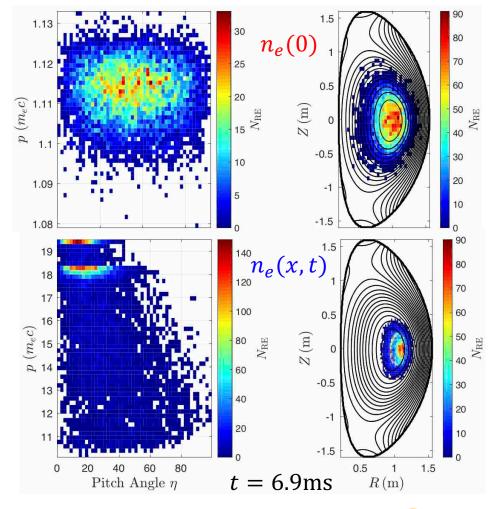
KORC FO calculations have been performed with closed and stochastic 3D fields from M3D-C1

 Poincare plots of M3D-C1 fields and KORC input fields show qualitative agreement

- Initialize uniformly distributed, monoenergetic (25MeV), monopitch (10°) RE beam (within red circle)
- Prompt loss of confinement due to drift orbit effects, gradual loss due to stochastic fields




FO calculations can be used as inputs to SE synthetic diagnostic


- After prompt loss phase, average over time to obtain good statistics for SE synthetic diagnostic
- RE density and infrared (IR) SE shown in poloidal plane
 - Drift orbit effects cause maximum density to shift to LFS of magnetic axis
 - Pitch angle dependence of SE causes signal to be larger on HFS

RE dissipation calculations show how spatio-temporal density profile affects energy and spatial distribution

- Initialize 2D Gaussian distributed at magnetic axis, monoenergetic (10 MeV), monopitch (10°) RE beam
- Using Hesslow bound electron model, calculations with flat and spatio-temporal density profile, RE current evolves qualitatively similar to DIII-D case
- Spatio-temporal density profile causes multiple energy beams to form

Main Results

Developed KORC for verification and validation of RE dissipation models

- RGC model that interpolates general magnetic field
- Monte Carlo Coulomb collisions with bound electron models
- Spatio-temporal partially-ionized and free electron density model and evolving electric field

Correct modeling of RE dissipation time scale requires:

- Bound electron model [e.g. Hesslow et al., PRL (2017)]
- Spatio-temporal "penetrating ring" density model
- Inductive electric field generated by slowing down collisions
 - Self-consistent model of E_{ind} presently being developed

Coupling of KORC and M3D-C1 is underway

- FO calculations use Fusion-IO M3D-C1 fields and can be used with a synchrotron emission synthetic diagnostic
- RGC calculations presently developed for axisymmetric fields

General framework developed in KORC can be applied to general simulation of REs

Direct application

- Optimization of SPI deposition for RE mitigation
- Interaction of REs with high frequency waves
- Modeling seed runaway generation

Development needed

- Modeling knock-on (avalanche) RE growth
- Fluid-kinetic coupling to MHD simulation of disruptions

Conceptual

Energetic particle transport

KORC can be used for verification and validation of RE physics models

Main Results

Developed KORC for verification and validation of RE dissipation models

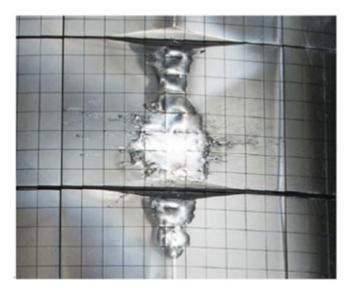
- RGC model that interpolates general magnetic field
- Monte Carlo Coulomb collisions with bound electron models
- Spatio-temporal partially-ionized and free electron density model and evolving electric field

Correct modeling of RE dissipation time scale requires:

- Bound electron model [e.g. Hesslow et al., PRL (2017)]
- Spatio-temporal "penetrating ring" density model
- Inductive electric field generated by slowing down collisions
 - Self-consistent model of E_{ind} presently being developed

Coupling of KORC and M3D-C1 is underway

- FO calculations use Fusion-IO M3D-C1 fields and can be used with a synchrotron emission synthetic diagnostic
- RGC calculations presently developed for axisymmetric fields



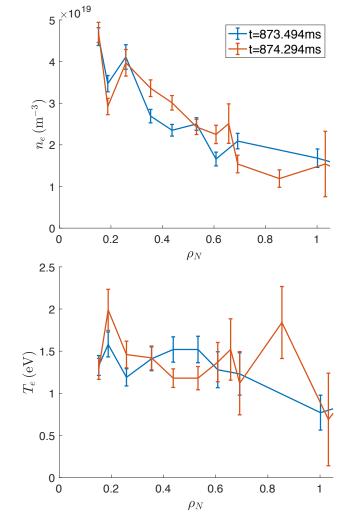
Extra Slides

Motivation

- Tokamak disruptions can accelerate significant runaway electron (RE) population
 - Large inductive electric field and impurity content
 - Increased stored energy and plasma current in future devices
- Shattered pellet injection is leading candidate for mitigation of REs
 - Experiments ongoing at DIII-D, JET, and KSTAR to assess feasibility using pre-planned, forced disruptions

Damage to JET-ILW from REs Matthews et al., *Phys. Scr.* (2016)

- KORC can be used for verification and validation of RE dissipation models, and predictive modeling of SPI deployment
- KORC developed for full orbits (FO), which are prohibitively computationally expensive for collisional processes
 - While KORC-GC uses guiding center orbits, magnetic field must be concentric flux surfaces in Boozer coordinates

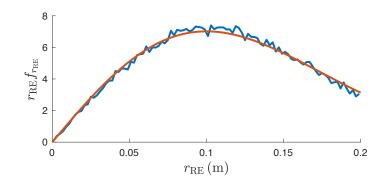


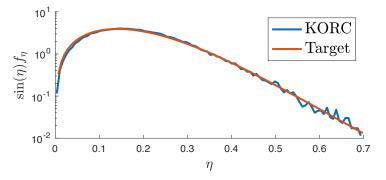
Thomson scattering data from RE plateau sets baseline for collision physics in DIII-D

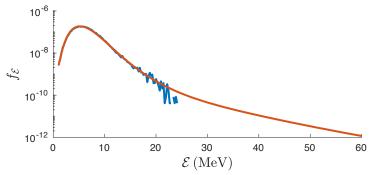
- Thomson scattering yields profile data of ne and Te during RE plateau
- n_e centrally peaked around 5x10¹⁹ m⁻³ falling to 2x10¹⁹ m⁻³ at edge

- Collisionality scales nearly linearly with n_e
- KORC initialized with fit to profile
- T_e relatively flat at 1.5 eV
 - Collisionality scales weakly with T_e for v>>v_{th}

Initial RE distribution sampled according to experimentally-inferred energy distribution

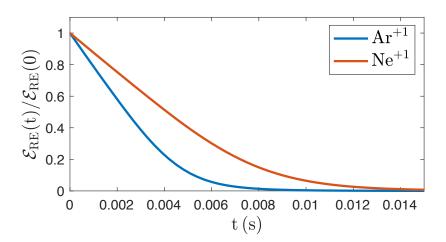

Desired distribution function

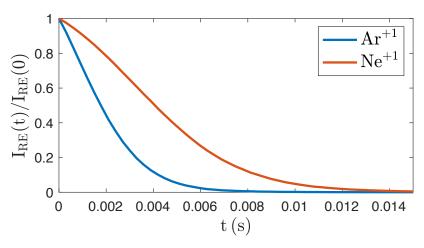

$$\begin{split} f(r_{\text{RE}}, \mathcal{E}, \eta) &= f_{\mathbf{r}}(r_{\text{RE}}) f_{\eta}(r_{\text{RE}}, \mathcal{E}, \eta) f_{\mathcal{E}}(\mathcal{E}), \\ f_{\mathbf{r}}(r_{\text{RE}}) &= \mathcal{N} \exp\left(-\frac{r_{\text{RE}}^2}{2\sigma_r^2}\right), \\ f_{\eta}(r_{\text{RE}}, \mathcal{E}, \eta) &= \frac{A}{2 \sinh A} \exp(A \cos \eta), \ A(r_{\text{RE}}, \mathcal{E}) = \frac{2E(r_{\text{RE}})}{Z_{\text{eff}}(r_{\text{RE}})} \frac{\gamma^2 - 1}{\gamma}, \\ f_{\mathcal{E}}(\mathcal{E}) &= f_H(\mathcal{E}) \end{split}$$


- f_{η} is standard pitch angle distribution [e.g. Aleynikov and Breizman, *PRL* (2015)]
- f_H from Hollmann et al., POP (2015)

Employ Metropolis-Hastings algorithm to initialize general, multidimensional, RE distribution

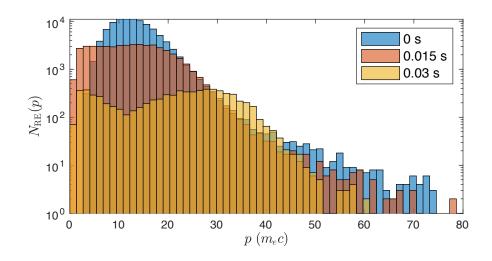
- Monte Carlo, Markov chain algorithm for sample selection
- Evaluate distribution function multiplied by phase-space Jacobian

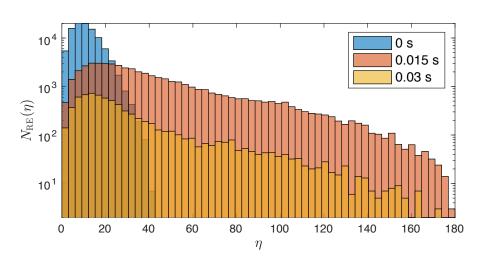




Increased number of bound electrons in injected impurity species enhances dissipation

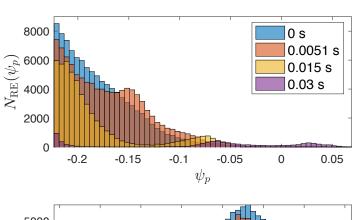
- Ar causes RE beam to decay approximately twice as fast as Ne
 - Consistent with there being nearly twice as many bound electrons
- If damping REs is the only consideration in selecting an impurity for SPI/MGI, higher atomic number is better
 - Creation, injection, ablation, ionization, and radiation are also important considerations

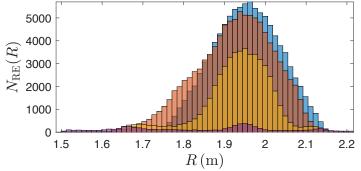


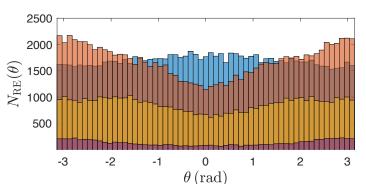


Energy dependence on collisionality and electric field govern RE energy distribution evolution

- Histograms shown for Hesslow bound electron model with spatio-temporal density and electric field evolution
- As REs energy and pitch are dissipated, particles thermalize
 - Removed from calculation when $p < m_e c$
- Evolving electric field has a larger affect on high energy particles which are less collisional







REs are distributed along flux surfaces and are sensitive to spatio-temporal density profile

- Histograms shown for Hesslow bound electron model with spatio-temporal density and electric field evolution
- On short time scale, spatial redistribution along flux surfaces
- Spatio-temporal density profile ring has maximum radius 0.2 m from initial center of RE beam

