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2D —=VDE in ITER. A summary

Initial 375 ms 635 ms 678 ms 700 ms
equilibrium Wall Contact Thermal Quench Max Vert Force LCFS disappears
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2D —-VDE In ITER. A summary

We have scanned diff
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2D —=VDE in ITER. A summary

Constantk, .17 eV T, BC
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Decreasing x, 3 eV T, BC

* Larger halo current had larger J,B, term, as expected,

The halo region formation

* but, itis offset by a stronger reduction in the J,B, contribution.
* Total vertical force is almost unaffected by magnitude of halo
current.

produces a current density
centroid displacement
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* 3D — VDE studies in an ITER plasma: progress status
Sideways forces (underway)



3D — VDE Studies (TQ also initiated by k)

Using actual vessel time Wall resistivity increased by 1000
T, = 235 ms T, = 0.235 ms
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3D — VDE Studies (TQ also initiated by k)

* Comparison of two simulations with 7, = 235 ms and
T,, = 0.235 ms shows that small sideways force is due to
v Ty, >>1 for n=1 mode with ITER vessel

* Large halo current case in progress

* Now in discussions with F. Villone about using CARRIDI to
generate a more detailed wall model that can be
incorporated into M3D-C1

* Need to separate “first wall” and vessel
* Need more detailed model of vessel structure
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* Modelling C pellets in NSTX-U
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Modelling C pellets in M3D-C1

* We are starting a systematic study of C pellet injection in a NSTX-U-
like configuration

* This is motivated by the EM pellet injector that is being proposed for
NSTX-U

* Very fast response time (2-3 ms)
e Speeds up to 1 km/s
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C ablation model based on...

* Sergeev et al., Plasma Phys. Rep. 32 (2006) 363
 Sergeev et al.,, ECA 18B (1994) 1364
* Kuteev et al., Sov. J. Plasma Phys. 10 (1984) 675

Neutral Gas Shielding Model (NGS)
* Key quantity is § = q,/qo = shielding factor

* Hydrogen pellets
* Low sublimation energy ¢
 § < 1: Most of the plasma heat flux is absorbed by the neutral pellet cloud

* Refractory pellets
* High sublimation energy
 § = 0.8: Most of the plasma heat flux reaches the pellet surface
* Delayed time at which evaporation begins

The model does not include
e Suprathermal particle contribution
* Electrostatic shielding does not work well
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C ablation model based on...

* Sergeev et al., Plasma Phys. Rep. 32 (2006) 363
 Sergeev et al.,, ECA 18B (1994) 1364
* Kuteev et al., Sov. J. Plasma Phys. 10 (1984) 675

For both limits an analytical expression for the reaction rate N is derived

Strong shielding (6 — 0) Weak shielding (6 — 1)
Based on scaling laws - 87 T3
N, lAtom =~ 1.94x10™ nd*>[cm™3] x i [ —rp fle M,
TL72[eV] 144 [cm]e =016 [eV] X
A ~028[amu] Z; 056 (y — 1)028 51— 1+ 1.725vn(n — 2)Zpe*ryn By (lefs /Te)
eVo2m, T,
Vs = /VTs/mp T, ~ 5000 K

However, C pellet can have an intermediate shielding NN
* There is no analytical model for this regime ' 0~
 They propose a standard interpolation:

Ny + N,
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Ablation models agree well with experimental data

They have been tested on a series of AUG shots

SERGEEYV et al.
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Modelling C pellet in M3D-C1

We have incorporated these ablation models in M3D-C1

However, the spatial distribution for the neutral cloud is prescribed:

B 1 (R-R,)+(Z~Z,)* RR,(1-cos(p-p,))
A AR 207 ) Tz
pt p

t

In NSTX-U R, ~ 1.4 m. Thus, the minimum toroidal neutral cloud size scales roughly as*

1.0

# tor. Planes Lol /i

.
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16 0.50 m ol
32 0.25m l

0.0

3 2 a0 1 2 3
oroidal angle (rad)

* Using spatially uniform toroidal planes. Now the code has the capability to increase the number of toroidal planes in a localized region. 15



Preliminary Studies

We have carried out preliminary simulations to evaluate how sensitive are the toroidal neutral

cloud size

Pellet radius 2 mm
Pellet velocity 1000 m/s
Poloidal size 1/, 10 cm
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Next steps...

 We have requested the previous AUG shots with C pellets injection
in order to Validate/calibrate our implementation.
* This will be important to determine how large can be the neutral cloud

Assuming that ablated particles follow an adiabatic expansion:
T, ~ 5000K - V, = 2.4x10°> cm/s (Carbon atoms)

Vion = 100 s71 (CY - C! with kprad)
Thus, the mean-free path A4 < 0.2 cm
This is a very small size for 3D modelling.
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Next steps...

* Evaluate whether or not adding the initial pellet heating

* “The interaction of refractory pellet with plasmas differs substantially from that
of Hydrogen pellets in that there is a noticeable delay between the time the
pellet enters the plasma and the time at which evaporation begins” [Kuteev84]

Thus, for pellet with high enough sublimation energy — like C pellets — there is a
non-zero time in which the pellet is heated before ablation.

This could be important for very fast pellet injection

dT

(4/3) 15 Cp f Q(e)de
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Next steps...

e Carry out a series of simulations in NSTX-U scanning different
parameters
* Toroidal neutral cloud size

* Using non-uniform toroidal plane distribution: increasing the spatial
resolution around the pellet injection position

* Different pellet velocities
« Different ratio between the ablation to C and C3

 We are also interested in Be and W pellet injections into an ITER-like
plasma
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Extras...
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Extras...
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Extras...

Plasma Temperature (eV)
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When we initiate the
Thermal Quench,
TQ, the plasma
temperature falls
down very sharply.
This increases the
plasma resistivity.

Plasma and Wall Currents (MA)
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Because of the
resistivity
increasement at TQ,
the plasma current
starts decaying
(Current Quench).
This induces a total
current in the wall.

Z-magnetic Axis (m)
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The CQ increases
the force
imbalance and the
plasma speeds up
its vertical drift.
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The currents
flowing in the
wall produce a
total vertical
force via JxXB



Extras...

Maximum vertical wall force for all the cases presented

Vertical Force (MN)
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