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Goal: consistent and comprehensive coupling
between plasma fluid codes and relativistic

electron kinetics.

I NIMROD can be used to solve non-relativistic drift kinetic equations
(DKEs).

I Can this capability be adapted to study relativistic electrons generated
during a disruption?

I What’s been done so far?

I What’s next?
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Propose NIMROD as a tool for doing continuum
relativistic drift kinetics.

Outline

I Existing capability: non-relativistic.
I Existing capability: relativistic.
I Plans.

A Tale of Two Cities

I Göteborg: Get the kinetics right. Study dynamics in a 2D relativistic
phase space but use simplified models of what’s happening spatially.

I Ft. Lauderdale: Get the fluid (MHD) right. Capture 3D magnetic
evolution but use simplified, relativistic electron fluid model (0-D phase
space).
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Chapman-Enskog-like (CEL) approach provides
consistent closure for fluid equations.

I In the Ramos theory(Ramos, Phys Plasmas 17, 082502 (2010)),
low-order fluid moments written as
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Closure moments computed from solution to
CEL-DKE.

I Assume f = fM + fNM with f̄NMe = O(δ2fMe) and f̄NMi = O(δfMi).
I Write CEL-DKE in the fluid frame (Ramos, Phys Plasmas 17, 082502 (2010)):
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Random questions

I Is a non-relativistic, electron CEL-DKE (and associated closures)
compatible with evolving a separate population of kinetically-treated,
relativistic electrons?

I Does a relativistic CEL-DKE theory for the entire distribution of
electrons exist?

I Or, should entire electron population be treated relativistically using
kinetics?
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Adapt existing velocity space representation to
relativistic phase space.

I With s = v/v0 and ξ = v‖/v, expansion for non-relativistic f is

f(R,Z, φ, ξ, s, t) =
∑
i

fi,n=0(ξ, s, t)αi,n=0

+
∑
i,n>0

fi,n(ξ, s, t)αi,n + f∗i,n(ξ, s, t)α∗i,n,

where αi,n ≡ ψi(x, y) exp (inφ) and (R,Z, φ) are cylindrical spatial
coordinates.

I With s = γmv/mc = p/mc = γv/c and ξ = p‖/p, expansion for
relativistic f is

f(R,Z, φ, ξ = p‖/p, s = γv/c, t) =
∑
i

fi,n=0(ξ = p‖/p, s = γv/c)αi,n=0

+
∑
i,n>0

fi,n(ξ = p‖/p, s = γv/c, t)αi,n + f∗i,n(ξ = p‖/p, s = γv/c, t)α∗i,n,
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Nonclassical quadrature scheme for
“unboosted" relativistic Maxwellian

f̃MR ∼ e−z
√

1+s2

I Relativisitc parameter:
z ≡ mec

2/kT .

Figure: f̃MR vs normalized momentum

Figure: Distribution in normalized momentum
space for z=1.

Figure: Distribution in normalized momentum
space for z=.01
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Preliminary Relativistic DKE for NIMROD

Start by implementing some of the terms in the NORSE Code∗:

∂f

∂t
− eE

mec
·∇pf + ∇p · (Fsf) = Cfp(f) + S

I Implement and test acceleration and synchrotron radiation reaction
force, Fs, in NIMROD. Future code development for

- Cfp(f): fully nonlinear, relativistic collision operator, and
- S: sources and sinks (heat or particles).

∗A. Stahl, et al., “NORSE: A solver for the relativistic non-linear Fokker-Planck equation for
electrons in a homogeneous plasma”,Computer Physics Communications 212 (2017)
269-279.
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Electric Field Acceleration and Synchrotron
Radiation Reaction Force

I 2D case: f = f (s, ξ, t) where ξ = p‖/p = s‖/s

I Collision-less and source-less plasma kinetic equation with radiation
reaction force:

∂f

∂t
− eE

mec
·∇pf + ∇p · (Fsf) = 0

I Expansion of 2nd and 3rd terms in (s, ξ):

E
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Time Evolution of a Relativistic Maxwellian
Synchrotron Radiation

E = 0 V/m, B = 20 T, ∆t = 5× 10−6s

10 / 13



Time Evolution of a Relativistic Maxwellian
E acceleration and synchrotron radiation

E = 0.22 V/m, B = 20 T, ∆t = 5× 10−6s
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Implement additional terms in NIMROD’s
relativistic electron DKE.

∂f

∂t
+ vgc ·∇f + ṗ‖

∂f

∂p‖
= C(f) + Cs(f) + SA

where
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γm

B∗

B∗‖
+

E∗ ×B∗‖(
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)2 , B∗ ≡ B +
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q
∇× b, E∗ ≡ E− 1

q

(
∇E − p‖

∂b

∂t

)
J. R. Cary and A. J. Brizard, “Hamiltonian theory of guiding-center motion”, Reviews of Modern Physics 81 (2009) 694-723.
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∂
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2
(γ/s)

[
Z + φ(x)−Ψ(x) +
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2
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4x2
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Z. Guo, C. J. McDevitt, and X. Tang, “Phase-space dynamics of runaway electrons in magnetic fields” Plasma Phys. Control. Fusion 59 (2017) 044003

(11pp).
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Future work.

I Implement full guiding center velocity and test particle collision
operator.

I Implement coupling scheme.

I Participate in benchmark exercise by comparing with relativistic
electron fluid approach.
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