Seeding NTM Simulations via Forced Reconnection

E. C. Howell¹ J. R. King¹ J. D. Callen² S. E. Kruger¹

¹Tech-X Corporation

²University of Wisconsin-Madison

Center for Tokamak Transient Simulations Meeting Fort Lauderdale Fl October 20, 2019

Work Supported by US DOE under DE-SC0018313

A technique is developed for seeding neoclassical tearing mode (NTM) simulations using forced reconnection

Introduction/Motivation

2 NIMROD Code Developments

Simulations Results

Modified Rutherford equation describes NTM evolution

- NTMs require a seed island for growth
- NTMs are seeded by MHD transients in experiments
- Simulations require method for generating seed island

Forced reconnection is used to generate seed islands ¹

• Linear response model provides insight into the forced reconnection process

$$B_{\psi} = \frac{\Delta_{ext}^{\prime} \rho_{s}}{-\Delta^{\prime} \rho_{s} + i \Delta \omega \tau_{VR}} B_{vac}$$

- Resonant external fields B_{vac} create islands in a vacuum
- Resonant fields are screened by a rotating plasma: $\Delta\omega au\gg 1$
- Fields that rotate with the plasma are amplified by marginally stable modes: $|\Delta'\rho_s|\ll 1.0$
- Magnetic island width scales with the radial magnetic field: $W \propto \sqrt{B_\psi}$

¹Builds on development by Matt Beidler

A technique is developed for seeding neoclassical tearing mode (NTM) simulations using forced reconnection

Introduction/Motivation

2 NIMROD Code Developments

3 Simulations Results

Heuristic Closures Model the Neoclassical Stresses²

$$\begin{split} \rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} \right) &= \vec{J} \times \vec{B} - \nabla p - \nabla \cdot \vec{\Pi}_i \\ E &= -\vec{v} \times \vec{B} + \eta J - \frac{1}{ne} \nabla \cdot \vec{\Pi}_e \\ \nabla \cdot \vec{\Pi}_i &= nm_i \mu_i \left\langle B_{eq}^2 \right\rangle \frac{\left(\vec{V} - \vec{V}_{eq} \right) \cdot \vec{e}_{\Theta}}{\left(\vec{B}_{eq} \cdot \vec{e}_{\Theta} \right)^2} \vec{e}_{\Theta} \\ \nabla \cdot \vec{\Pi}_e &= -\frac{nm_e \mu_e}{ne} \left\langle B_{eq}^2 \right\rangle \frac{\left(\vec{J} - \vec{J}_{eq} \right) \cdot \vec{e}_{\Theta}}{\left(\vec{B}_{eq} \cdot \vec{e}_{\Theta} \right)^2} \vec{e}_{\Theta} \end{split}$$

- Closures model dominant neoclassical effects
 - Bootstrap current drive
 - Poloidal ion flow damping
 - Enhancement of polarization current
- ²T. Gianakon, POP 9, 2002

E. C. Howell, J. R. King , J. D. Callen , S. E. Kruger

6/17

Post-processing diagnostic calculates Fourier transformed $B\cdot \nabla\psi$ ³

• Magnetic island width scales with the perturbed flux

$$W \propto \sqrt{ ilde{\psi}_{m,n}}$$

 Perturbed flux is related to the radial component of the perturbed magnetic field

$$\frac{\partial \tilde{\psi}}{\partial \Theta} = \mathcal{J} \tilde{B} \cdot \nabla \psi_0$$

• Poloidal field line integration calculates flux surface averaged cos and sin transforms of B_ψ

$$B_{\psi} \equiv \sqrt{B_{\psi,c}^2 + B_{\psi,s}^2}$$
$$B_{\psi,c} = \frac{\oint \oint \mathcal{J}\tilde{B} \cdot \nabla\psi_0 \cos\alpha d\Theta d\phi}{V'}$$
$$V' = \oint \oint \mathcal{J}d\Theta d\phi$$
$$\alpha = n\phi - m\Theta$$

³M.J. Shaffer et al, NF 48 (2008) 024004

E. C. Howell, J. R. King , J. D. Callen , S. E. Kruger

External fields generated using planar coil array

- Biot-Savart integration calculates magnetic field at nodes along NIMROD's computational boundary
- The number of coils and their orientation can be varied to tune the external field

• External fields are applied as a slowly varying pulse

$$B_n(t) = B_{ext} \times \underbrace{\Psi(t)}_{\text{Pulse}} \times \underbrace{\exp(i\Omega t)}_{Rotation}$$

External fields are rotated with the plasma to minimize screening

A technique is developed for seeding neoclassical tearing mode (NTM) simulations using forced reconnection

Introduction/Motivation

2 NIMROD Code Developments

Simulations Results

174446 terminates in a well diagnosed NTM disruption

DIII-F

Simulations use kinetic reconstruction of 174446 at 3390ms.

Nominal Numerical Parameters	
Lundquist number	10 ⁶
Prandlt number	10
k_{\parallel}/k_{\perp}	10 ⁸
μ_e	$10^5 ightarrow 10^6 \left[s^{-1} ight]$
μ_i	$10^{3} [s^{-1}]$
Toroidal Modes	$n_{max} = 2 \rightarrow 10$
Poly_degree	3
mx, my	80, 64
Ohms Law	MHD

 Modest parameters used to quickly explore parameter space

Coil configuration varied to generate 2/1 vacuum perturbation

- Reversed D coil configuration has small resonant 2/1 component
- Polarity designed to apply m=2 perturbation
- \bullet Configuration designed to mimic flux aligned Θ
- Colors indicate coil polarity

12/17

Coil configuration varied to generate 2/1 vacuum perturbation

- Forward D coil configuration has large resonant 2/1 response
- Coil geometry is similar to DIII-D's C-coils

External field rotation frequency varied to minimize screening

- \bullet Largest response observed around $\Omega \sim -7~\text{krad/s}$
- Resonant plasma rotation frequency is $\omega \sim -9krad/s$
- External fields applied as a 1ms pulse

-2/1 perturbation strongly screened at $\omega = -7 krad/s$

• Resonant 2/1 and 3/1 perturbations slowly decay following the pulse

Application of external fields generates rotating 2/1 island

- Forced reconnection shows promise as a method for seeding NTM simulations
- Perturbations seed 2/1 island that slowly decays following the application of the external fields
- Screening is minimized when the magnetic perturbation is rotated with the plasma
- Increasing external field amplitude increases resonant 2/1 amplitude but completely stochasticises the edge
- Future work: Optimize coil configuration to maximize external resonant 2/1 component and minimize 3/1 and 4/1 components
- Study NTM locking using 174446 equilibrium