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Content of the research

Reduced models of runaway electron

I. w/o source term: dynamic scale 1s much faster than the runaway
generation;

2. w/ source term: the self-consistent initial value simulation.

The least-squares finite element method and the implicit
scheme is used to solve the reduced model of runaways ,
which is shown to release the CFL time step constraint;

Additional 1terations at each time step are applied on the
reduced model with the nonlinear source terms.
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Runaway electron generation is an important
phenomenon of disruptions
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Previous work has investigated linear resistive
MHD instabilities with runaway electrons

Runaways can drive or suppress MHD instabilities during the current quench
phase, which in turn may improve or deteriorate the confinement.

* The post-disruption runaway current profile could be more strongly peaked
in the center of the discharge than the pre-disruption current. Plasmas with

steep current profiles can be prone to tearing-mode instability. (P.Helander
et.al. Phys.Plasma 14, 122102(2007))

* Such a peaked runaway current can also drive other resistive
magnetohydrodynamic instabilities in the plasma with high resistivity.
H.S.Cai et.al. investigated the resistive internal kink mode in a tokamak

plasma with runaway current using M3D. (H.S.Cai and G.Y.Fu, Nucl. Fusion,
55022001(2015))

Numerical difficulty: a small time step is often used to push the relativistic runaway
electrons, which causes the expensive nonlinear simulations of the MHD modes.



Energetic particle component and
runaway electron are essential different

* In the hybrid model, energetic particles treat as a perturbative
component; but the runaway electrons become dominant
during the current quench;

* Relativistic speed of runaway electrons disables the kinetic
resonance with the low frequency MHD modes. So the kinetic
effect in the momentum space 1s not essentially important for
the runaways;

* During the current quench, parallel electric field can not be
ignored even 1n the study of the interaction with the low
frequency modes.



Several approximations are appropriate for the
RE reduced model

Runaway electrons are collisionless and the inertia of runaway electrons 1s
neglected;

Runaway electrons are highly relativistic and their velocities are mainly
parallel to the magnetic field as the passing particles;
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The time scale of MHD instabilities of the post-disruption plasma is much
shorter than that of runaway electron, so the generation source of runaway
electrons 1s not considered to study the instability. However, the equilibrium
distribution of runaways 1s difficult to calculate, so we take the account of
the source and sink terms for modeling discharge evolution;

The energy variation of the runaway electrons is ignored in the studying of a
low frequency MHD modes.



The RE drift-kinetic equation is the basis for a

fluid model

Hazeltine’s drift kinetic equation with a low frequency MHD mode:
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The reduced RE drift kinetic equation is being
implemented in NIMROD

* Apply our model approximations on Hazeltine’s drift kinetic equation with
the low frequency MHD mode:
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constant energy collisionless  constant U ignore the gradient drift of REs

where, E 1s the total guiding center energy:
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A case is tested in cylindrical geometry

The runaway electrons are highly relativistic and
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A larger time step is tested
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Time step used in the simulation is found to be much larger than the CFL constrained
time step:

cAt > L
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A case is tested in toroidal geometry with constant q
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When the time step increases up to 100 Alfven time, the contours of runaway
density becomes diffusive after ten thousands of rotations.



The RE drift-kinetic equation couples with the
MHD field
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* To calculate RE drift velocity, we need in update the field variables in the
framework of NIMROD. Here the runaway electrons contribute a resistance-free
current, which 1s removed from the total current in Ohm’s law.
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The predict-correct scheme is used in NIMROD
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However, equilibrium orbits of runaways is
difficult to calculate

* The electric fields generated during the current quench phase can give rise
to runaway electrons with energies as high as 10’s-100’s of MeV.

* The confinement volume shrinks with increasing particle energy. The orbits
(in the unperturbed field) of the particles are circles that are displaced
horizontally with respect to the flux surfaces, with a displacement that is

proportional to the energy.
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The contours of the flux function show the
magnetic surfaces at equilibrium.
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The contours of the stream functions show
the drift surfaces of beams with the different

runaway energies.

Numerical analysis of runaway tokamak equilibrium Z. Yoshida
Nucl.Fusion, p317(1990)
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Initial value nonlinear calculation is needed

The uncertainties on determining the equilibrium distribution of
runaway electrons and MHD equilibrium at the post-disruption:
— The shrinkage of the confinement zone of the relativistic runaways;

— The MHD equilibrium 1s modified by the runaway current, which
becomes dominant at post-disruption plasma.

The linear calculation relies on the accurate equilibriums of both MHD
and runaway electrons. However, the initial value nonlinear calculation
can start with an inaccurate runaway electron distribution and low beta
MHD equilibrium.



Runaway electron source term
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Runaway reduced model takes account of source
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The force due to parallel electric field
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Numerical scheme is unconditionally stable
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Simulation results
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Conclusion

* We have summarized two types of derivation of the reduced
model of runaways in the interaction with the low frequency
resisttive MHD mode;

* The tests demonstrate the implicit solve of the RE density
equation, which release the CFL time constraint. But we
haven't yet demonstrated the full implicit evolution.

* The implementation of the nonlinear source term is needed to
make a self-consistent initial value simulation.



Reduced RE kinetic equation with whistlers

* Because of the cyclotron resonance, the magnetic momentum 1s
not a constant of motion.

* Instead of the magnetic momentum, £ — wp becomes a constant
of motion of runaway electrons, which leads to a 3D kinetic
equation in the interaction with the whistlers.

of - d,uc‘?f of
atJrcb Vf+ 7 + 90 =0



Previous work has investigated kinetic
instabilities with runaway electrons

* Due to the highly relativistic speed, the runaway electrons are

observed to drive the whistler wave unstable with the kinetic
resonance condition,
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Major disruptions in tokamaks often have
similar characteristics
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A typical time dependence of the plasma density, m=2 magnetic fluctuations,
central temperature and plasma current during a period of major disruption.
(F.C. Schuller 1995 Plasma Phys. Control. Fusion 37 A135)



