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RE generation problemTHE SEED RUNAWAY ELECTRON PROBLEM

I For a given plasma state (temperature drop, electric field
evolution, magnetic field stochasticity, etc...), how many
electrons become runaways before the second generation
(avalanche) kicks in?

I Not knowing this is one of the weakest links in the assessment
of the potential dangers of runaways in ITER and beyond

I The exponential growth predicted/assumed in the avalanche
second generation process depends critical on the seed density

I The seed production depends on not well understood process
including the nontrivial spatiotemporal evolution of the
magnetic field stochasticity and the plasma cooling history

I This problem is one of the main deliverables of the DOE
Theory Performance Targets for the SCREAM SciDAC project
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STANDARD APPROACH FOR THE COMPUTATION OF
SEED RE DENSITY

I Solve the FP equation for a Maxwellian i.c. to get f (r,p, t)

I Prescribe the “runaway region”, ⌦RE , based on a model
and/or physical intuition

I Integrate f (r,p, t) over the runaway region

nRE (t) =

Z

⌦RE

f (r,p, t) d⌦

Example (among several others in the literature):
A. Stahl et al
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under certain conditions [15, 16]. It has previously been 
investigated analytically or using Monte-Carlo simulations 
[16, 17] or purpose-built !nite-difference tools [17, 18]. 
Using code to model a temperature drop enables the ef!-
cient study of a wider range of scenarios, and allows full 
use of other capabilities of code, such as avalanche gen-
eration or synchrotron radiation reaction. Here, we restrict 
ourselves to a proof-of-principle demonstration, and leave a 
more extensive investigation to future work.

To facilitate a comparison to the theoretical work by Smith 
and Verwichte [18], we will model a rapid exponential temper-
ature drop, described by

( ) ( ) /= + − − !T t T T T e ,t t
f 0 f (3)

with T0  =  3.1 keV the initial temperature, =T 31f  eV the !nal 
temperature, and =!t 0.3 ms the cooling time scale. We also 
include a time-dependent electric !eld described by

( )
( )

⎛
⎝⎜

⎞
⎠⎟=E t

E
E
E

T
T t

,
D D 0

0
 (4)

with ( / ) /=E E 1 530D 0  the initial normalized electric !eld. 
The temperature and electric-!eld evolutions are shown in 
!gure 1(a) and are the same as those used in !gure 5 of [18], 
as are all other parameters in this section.

Figure 1(b), in which the additional parameters 
= ⋅n 2.8 1019 m−3, and =Z 1eff  were used, illustrates the dis-

tribution-function evolution during the temperature drop. The 
!gure  shows that as the temperature decreases, most of the 
electrons quickly adapt. At any given time t, the bulk of the dis-
tribution remains close to a Maxwellian corresponding to the 
current temperature T (t). The initially slightly more energetic 
electrons, although part of the original bulk population, ther-
malize less ef!ciently. On the short cooling time-scale, they 
remain as a distinct tail, and as the thermal speed decreases 
they become progressively less collisional. This process is evi-
dent in the !rst three time steps shown (t  =  0.025–0.83 ms). In 
the !nal time step, the electric !eld has become strong enough 
to start to affect the distribution, and a substantial part of the 
high-energy tail is now in the runaway region. This can be 
seen from the qualitative change in the tail of the distribution, 
which now shows a positive slope associated with a strong 
'ow of particles to higher momenta.

For the temperature evolution in equation  (3), analytical 
results for the hot-tail runaway generation were obtained in 
[18]. Assuming the background density to be constant, the 
runaway fraction at time t can be written as
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where ( ) ( / ) ( ) ( / )(ˆ ˆ )τ π ν π= − = −! !t t t t t3 4 3 4ee  is a  nor-
malized time, ( ) ( )[ ] τ= +u t x t30 , x[0] is the speed nor-
malized to the initial thermal speed, and uc is related to the 
critical speed for runaway generation: ( ) ( )[ ] τ= +u t x t3c c

0 . 
Equation (5), which corresponds to equation (18) in [18], is 
only valid when a signi!cant temperature drop has already 
taken place (as manifested by the appearance of the cooling 
time scale !t  as a ‘delay’ in the expression for τ, see [18]). 
Equation (5) is derived in the absence of an electric !eld; only 
an exponential drop in the bulk temperature is assumed. The 
electric !eld shown in !gure 1(a) is only used to de!ne a run-
away region, so that the runaway fraction can be calculated. 
In other words, it is assumed that the electric !eld does not 
have time to in'uence the distribution signi!cantly during the 
temper ature drop.

The runaway fraction calculated using equation (5) includes 
only the electrons in the actual runaway region, i.e. particles 
whose trajectories (neglecting collisional momentum-space 
diffusion) are not con!ned to a region close to the origin. 
In this case, the lower boundary of the runaway region is 
given in terms of the limiting (non-relativistic) momentum 
y for a given ξ: ( [( ) ])δ ξ= + −ξ

−y E E1 /2 1c
2

c
1/2 [17], where 

/π= ΛE e n mc4 lnc
3 2 is the critical electric !eld for runaway 

generation [19]. The temperature drop does however lead to an 
isotropic high-energy tail (in the absence of an electric !eld). 
By de!ning the runaway region as ( [ / ]) /δ> = − −y y E E 1c

2
c

1 2, 
thereby including all particles with >v vc, equation (5) can be 
simpli!ed to
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c cc
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where erfc(x) is the complementary error function. By default, 
code uses such an isotropic runaway region, which is a good 

Figure 1. (a) Temperature and electric-!eld evolution in equations (3) and (4). (b) Parallel (ξ = 1) electron distributions (solid) and 
corresponding Maxwellians (dashed) at several times during the temperature drop in (a). A momentum grid with a !xed reference 
temperature ˜ =T 100 eV was used and the distributions are normalized to F(y  =  0) in the !nal time step to facilitate a comparison.
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where erfc(x) is the complementary error function. By default, 
code uses such an isotropic runaway region, which is a good 

Figure 1. (a) Temperature and electric-!eld evolution in equations (3) and (4). (b) Parallel (ξ = 1) electron distributions (solid) and 
corresponding Maxwellians (dashed) at several times during the temperature drop in (a). A momentum grid with a !xed reference 
temperature ˜ =T 100 eV was used and the distributions are normalized to F(y  =  0) in the !nal time step to facilitate a comparison.
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approximation in the case of only Dreicer and avalanche gen-
eration (especially once the runaway tail has become sub-
stantial); however, in the early stages of hot-tail-dominated 
scenarios, the isotropic runaway region signi!cantly overes-
timates the actual runaway fraction, and the lower boundary 
ξyc  must be used.

Figure 2 compares the runaway density evolution com-
puted with code, using both ξ-dependent and isotropic 
runaway regions, to equations  (5) and (6), respectively. The 
parameters of the hot-tail scenario shown in !gure  1 were 
used, and no avalanche source was included in the calcul-
ation. The collision operator used in [18] is the non-relativ-
istic limit of equation (2), with =ξc 0 (since the distribution 
is isotropic in the absence of an electric !eld). code results 
using both this operator (red, dotted) and the full equation (2) 
(yellow, dash–dotted) are plotted in !gure 2, with the latter  
producing �∼ 50% more runaways in total. This differ-
ence can likely be explained by the relatively high initial  
temper ature (3 keV) in the scenario considered, in which 
case the non-relativistic operator is not strictly valid for the 
highest-energy particles. Good agreement between code 
results and equations  (5) and (6) (black, solid) is seen for 
the saturated values in the !gure. A code calculation where 
the electric-!eld evolution is properly included in the kinetic 
equation  (corresp onding to the distribution evolution in 
!gure 1(b)) is also included (blue, dashed), showing increased 
runaway production. With the isotropic runaway region (!gure 
2(b)), the increase is smaller than a factor of 2, and neglecting 
the in'uence of the electric !eld can thus be considered rea-
sonable for the parameters used, at least for the purpose of 
gaining qualitative understanding. With the ξ-dependent run-
away region (!gure 2(a)), the change in runaway generation is 
more pronounced, and the inclusion of the electric !eld leads 
to an increase by almost an order of magnitude. Note that the 
!nal runaway density with the electric !eld included is very 
similar in !gures 2(a) and (b), indicating that the details of the 
lower boundary of the runaway region become unimportant 
once the tail is suf!ciently large. Throughout the remainder of 
this paper we will make use of the isotropic runaway region.

We conclude that, in order to obtain quantitatively accu-
rate results, the electric !eld should be properly included, 
and a relativistic collision operator should be used. This is 

especially true when modelling ITER scenarios, where the 
initial temperature can be signi!cantly higher than the 3 keV 
used here.

3. Conservative linearized Fokker–Planck collision 
operator

Treating the runaway electrons as a small perturbation to a 
Maxwellian distribution function, the Fokker–Planck oper-
ator for electron–electron collisions [20, 21] can be linear-
ized and written as { } { } = +!C f C f C Cl tp fp. The so-called 
test- particle term, =C C f f,tp nl

1 M{ }, describes the pertur-
bation colliding with the bulk of the plasma, whereas the 
!eld- particle term, { }=C C f f,fp nl

M 1 , describes the reaction 
of the bulk to the perturbation. Here Cnl is the non-linear 
Fokker–Planck–Landau operator, fM denotes a Maxwellian, 
and = −f f f1 M the perturbation to it ( !f f1 M). Collisions 
described by { }C f f,1 1  are neglected since they are second 
order in f1. The full linearized operator Cl conserves particles, 
momentum and energy. Since it is proportional to a factor 

( )−yexp 2 , the !eld-particle term mainly affects the bulk of the 
plasma, and is therefore commonly neglected when studying 
runaway-electron kinetics. The test-particle term in equa-
tion (2) only ensures the conservation of particles, however, 
not momentum or energy.

Under certain circumstances, it is necessary to use a fully 
conservative treatment also for the runaway problem, in par-
ticular when considering processes where the conductivity of 
the plasma is important. In the study of runaway dynamics 
during a tokamak disruption using a self-consistent treatment 
of the electrical !eld, accurate plasma-current evolution is 
essential, and the full linearized collision operator must be 
used. A non-linear collision operator valid for arbitrary par-
ticle (and bulk) energy has been formulated [22, 23]. The col-
lision operator originally implemented in code is the result 
of an asymptotic matching between the highly relativistic 
limit of the test-particle term of the linearized version of that 
operator, with the usual non-relativistic test-particle operator 
[24], and is given in equation (2). The relativistic !eld-particle 
term is signi!cantly more complicated, however, and its use 
would be computationally more expensive. Here we instead 

Figure 2. Hot-tail runaway density obtained using code—with (blue, dashed) and without (yellow, dash–dotted; red, dotted) an electric 
!eld included during the temperature drop—and the analytical estimates equations (5) and (6) (black, solid), for the temperature and E-!eld 
evolution in !gure 1(a). An (a) ξ-dependent and (b) isotropic lower boundary of the runaway region was used. The collision operator in 
equation (2) was used for the blue and yellow lines, whereas its non-relativistic limit was used for the red and black lines.

Nucl. Fusion 56 (2016) 112009Cooling model and E field Time-dependent distribution function Seed runaway electron density

A. Stahl, et al., Nucl. Fusion 56 (2016) 112009
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PRODUCTION RATE
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RE generation problem: Probabilistic approach
Probabilistic approach
Compute the probability, PRE , that an electron located at (r,p)
will runaway at or before time t and integrate over the whole space

low
probability

high
probability

t1 t2 t3

time

Probability or runaway in (cos (pitch), momentum) space as function of time

Probability of 
runaway

Initial condition
e.g., Maxwellian

RE seed density

ADVANTAGES OF THE PROBABILISTIC APPROACH:
PRE IS INDEPENDENT OF THE CONDITION

I An advantage of the probabilistic approach is that PRE is a
kind of Green’s function for the RE seed density computation

I That is, once PRE is computed, the RE seed production can
be simply evaluated for any initial condition, f0, by simply
doing the integral

nRE (t) =

Z
PRE (r,p, t) f0(r,p) d⌦

I This allows the fast evaluation of di↵erent i.c. scenarios
I On the other hand, in the standard approach, for each initial

condition, f0(r,p), we have to solve the whole time-dependent
Fokker-Planck initial value problem to get f (r,p, t)

nRE (t) =

Z

⌦RE

f (r,p, t) d⌦

RE seed production can be directly evaluated for any initial
condition, allowing the fast evaluation of di↵erent i.c. scenarios
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ADVANTAGES OF THE PROBABILISTIC APPROACH:
PRE IS INDEPENDENT OF THE INITIAL CONDITION

I An advantage of the probabilistic approach is that PRE is a
kind of Green’s function for the RE seed density computation

I That is, once PRE is computed, the RE seed production can
be directly evaluated for any initial condition, f0, by simply
doing the integral

nRE (t) =

Z
PRE (r,p, t) f0(r,p) d⌦

I This allows the fast evaluation of di↵erent i.c. scenarios
I On the other hand, in the standard approach, for each initial

condition, f0(r,p), we have to solve the whole time-dependent
Fokker-Planck initial value problem to get f (r,p, t)

nRE (t) =

Z

⌦RE

f (r,p, t) d⌦

I In the probabilistic approach, the runaway region ⌦RE (r,p, t)
corresponds to the region where PRE (r,p, t) ⇠ 1

I In 3D (p, ⇣, r), the boundary of ⌦RE (r,p, t) is not sharp and
its time-dependent shape can be highly nontrivial.

I This can be problematic for analytical studies based on the
standard approach that assume a simple shape of ⌦RE
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HOW TO COMPUTE THE PROBABILITY OF RUNAWAY PRE?

I Direct Monte-Carlo [Fernandez-Gomez, et al.,Phys. Plasmas
(2012)]. Straightforward to implement but ine�cient and
potentially inaccurate due to statistical sampling errors.

I Adjoint Fokker-Planck [Liu, et al., Phys. Plasmas (2016)].
Elegant and more e�cient than the direct MC, but it requires
the numerical solution of a PDE.

I Backward-Monte Carlo Based on the Feynman-Kac formula.
Reduces the problem to the computation of Gaussian
integrals. No MC sampling or PDE solving required! E�cient
and unconditionally stable.

I Zhang and del-Castillo-Negrete, Phys. Plasmas 24, 092511
(2017)

I Yang, Zhang, del-Castillo-Negrete, and Stoyanov, Journal of
Comp. Phys 444, 110564 (2021).
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x

Sample paths

tim
e

PT(x)=P(x,t=T)
Terminal condition

T

t

Xi(s)
Xi(s=0)=x

@P

@t
+ a(x)

@P

@x
+

b(x)

2

@2P

@x2
= 0

dX = a(X)ds+
p
b(X)dW

P (x, t) =
1

N

NX

i=1

PT (Xi(s = T ))

Feynman-Kac Formula
Intuitive description of simple 1D version

FOKKER-PLANCK EQUATION

• Fokker-Planck equation

@P

@t
= � @

@x
[V (x)P(x , t)] +

@2

@x2
[D(x)P(x , t)] .

• Equivalent stochastic di↵erential equation

dX = V (X )dt +
p

2D(X ) dW (s)

• Adjoint (Backward) Fokker-Planck equation

@P

@t
+ V (x)

@P

@x
+ D(x)

@2P

@x2
= 0

• The solution of the Backward Fokker-Planck equation with

terminal condition P(x , t = T ) = PT (x) is given by the

Feynman-Kac formula:

P(x , t) = E [PT (X (T ))|X (t) = x ] ⇡ 1

N

NX

i=1

PT (Xi (T ))

where {Xi (t)} are sample paths of the stochastic system such that

Xi (t) = x , with i = 1, . . .N, N � 1.

If interested in the extension and  
applications to nonlocal transport 
check my invited talk tomorrow
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PROPOSED FEYNMAN-KAC BASED METHOD
(Simple version)

I To simplify the discussion, consider the following pitch angle,
⇠, and momentum, p, Fokker-Plank model

@f

@t
+

@

@p
(b1f ) +

@

@⇠
(b2f ) � 1

2

@2

@⇠2
(�2f ) = 0

I In this case PRE (T � t, p, ⇠) = P(t, p, ⇠) where P(t, p, ⇠) is
the solution of adjoint FP which according to the
Feynman-Kac formula is given by the conditional expectation

P(t, p, ⇠) = E[�(pT , ⇠T ) | pt = p, ⇠t = ⇠]

�(pT , ⇠T ) =

(
1, if pT � p⇤,

0, otherwise,

where pt and ⇠t are the paths of the stochastic equations

dpt = b1(pt , ⇠t) dt,

d⇠t = b2(pt , ⇠t) dt + �(pt , ⇠t) dWt
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DISCRETIZATION OF FEYNMAN-KAC FORMULA REDUCES
THE COMPUTATION TO GAUSSIAN INTEGRALS

I Introduce a partion T = {0 = t0 < t1 < · · · < tN = T}, of
[0, T ], and for small �t = tn+1 � tn approximate

ptn+1 ⇡ ptn + b1(ptn , ⇠) �t

⇠tn+1 ⇡ ⇠tn + b2(ptn , ⇠tn) �t + �(ptn , ⇠tn) �W ,

I Within the time interval [tn, tn+1], write

P(tn, p, ⇠) = E
⇥
P(tn+1, ptn+1 , ⇠tn+1) | ptn = p, ⇠tn = ⇠

⇤
.

and, using the Gaussian propagator, approximate

P(tn, p, ⇠) ⇡
Z

R
P (tn+1, p + b1�t, ⇠ + b2�t + �x)

e�
1
2

x2

�t

p
2⇡�t

dx ,

which can becomputed using Gauss-Hermite quadrature rules.
I Also, an interpolation in (⇠, p) space is needed at each step.
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I Some advantages of the method
I Unconditionally stable (no need to solve PDEs)
I Second order convergence in space, first order in time
I No need to sample orbit (no MC noise)
I Straightforward to parallelize.

I Further details of the method, including:
I GPU accelerated matrix representation implementation for

time-dependent models, e.g. T = T (t) and E = E (t).
I Use of piecewise cubic Hermite interpolating polynomials
I 3D examples including applications to fluid mechanics
I Benchmarks with analytical solutions and comparisons with

explicit and implicit adjoint Fokker-Planck solvers

can be found in:

M.Yang, G. Zhang, D. del-Castillo-Negrete, and M.Stoyanov, “A

Feynman-Kac based numerical method for the exit time probability

of a class of transport problems.” Accepted for publication in

Journal of Computational Physics (2021).

Journal of Computational Physics 444 (2021) 110564

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A Feynman-Kac based numerical method for the exit time 

probability of a class of transport problems !

Minglei Yang a, Guannan Zhang b,∗, Diego del-Castillo-Negrete a, 
Miroslav Stoyanov b

a Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
b Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America

a r t i c l e i n f o a b s t r a c t
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Stochastic differential equations
First exit time
Adjoint equations
Transport

The exit time probability, which gives the likelihood that an initial condition leaves 
a prescribed region of the phase space of a dynamical system at, or before, a given 
time, is arguably one of the most natural and important transport problems. Here we 
present an accurate and efficient numerical method for computing this probability for 
systems described by non-autonomous (time-dependent) stochastic differential equations 
(SDEs) or their equivalent Fokker-Planck partial differential equations. The method is 
based on the direct approximation of the Feynman-Kac formula that establishes a link 
between the adjoint Fokker-Planck equation and the forward SDE. The Feynman-Kac 
formula is approximated using the Gauss-Hermite quadrature rules and piecewise cubic 
Hermite interpolating polynomials, and a GPU accelerated matrix representation is used 
to compute the entire time evolution of the exit time probability using a single pass of 
the algorithm. The method is unconditionally stable, exhibits second order convergence in 
space, first order convergence in time, and it is straightforward to parallelize. Applications 
are presented to the advection diffusion of a passive tracer in a fluid flow exhibiting chaotic 
advection, and to the runaway acceleration of electrons in a plasma in the presence of an 
electric field, collisions, and radiation damping. Benchmarks against analytical solutions as 
well as comparisons with explicit and implicit finite difference standard methods for the 
adjoint Fokker-Planck equation are presented.

 2021 Elsevier Inc. All rights reserved.

1. Introduction

The study of transport is a top priority in science and engineering, as well as a source of applied mathematics and 
computational challenges. Some examples, among many others, include the quantification of the dispersal of pollutants in 
the atmosphere and the oceans, the design of efficient mixing protocols in chemical and mechanical engineering, and the 
study of heat and particle transport in magnetically confined plasmas in controlled nuclear fusion [2,5,33]. The computation 

! This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US 
government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, 
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE 
will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

* Corresponding author.
E-mail address: zhangg@ornl.gov (G. Zhang).

https://doi.org/10.1016/j.jcp.2021.110564
0021-9991/ 2021 Elsevier Inc. All rights reserved.
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• As an integral part of the ASCR and OFES collaboration, 
with colleagues of the ORNL Applied Math group we developed 
the Backward Monte Carlo (BMC) code 

• The BMC is based on the Feynman-Kac formula and provides 
the
probability of an electron to runaway given an initial condition
and plasma state

• BMC is fully parallelizable, and allows the accurate and efficient 
evaluation of the dependence of the RE production rate on 
physical parameters and plasma states

• The current version of the algorithm has been extended to 
3D fully time dependent regimes to study the role of 
confinement in dynamic thermal quench scenarios 

• We have also explored the use of BMC as an efficient method to 
couple the  kinetic description of RE with the fluid description of 
the plasma

TIME EVOLUTION OF PROBABILITY OF RUNAWAY PRE

TIME EVOLUTION OF PROBABILITY OF RUNAWAY PRE

Radiation reaction force ⇠ 1/⌧ , collisions ⇠ Z , acceleration ⇠ E .
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Radiation reaction force ⇠ 1/⌧ , collisions ⇠ Z , acceleration ⇠ E .
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RE generation problem Fast and accurate exploration of a RE 
generation for different disruption scenarios
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Seed RE observed during quiescence ne ramp down 
regimes in MST

RE predominantly form at the edge

Delgado-Aparicio, et al Submitted to PRL (2022)
Invited Talk Wednesday 10:00 AM
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3D RUNAWAY ELECTRON ACCELERATION MODEL

3D+1 Fokker-Planck equation for f (r , p, ⇠; t)

@f

@t
= F + R + C + D , with

I Electric field force F{f } = �E
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COLLISIONS MODEL

CA(p) = ⌫̄ee v̄2
T
 (x)

x

CB(p) =
1

2
⌫̄ee v̄2

T
1

x


Z + �(x) �  (x) +

�4

2
x2

�

CF (p) = 2 ⌫̄ee v̄T  (x) .

where x = 1
v̄T

p
� , � =

r
1 +

⇣
�̃p
⌘2

, �̃ = ṽT
c =

q
2T̃
mc2

�(x) =
2p
⇡

Z x

0
e�s2ds ,  (x) =

1

2x2


�(x) � x
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and the time dependence enters through the variables

v̄T (t) =

s
T̂

T̃
, ⌫̄ee(t) =

 
T̃

T̂

!3/2
ln ⇤̂

ln ⇤̃
, �(t) =

s
2T̂

mc2

where T̂ (t) denotes the time-dependent plasma temperature.
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Off-axis seed-location and growth rates in good 
agreement with theory (Dreicer, Gurevich, Kruskal-Bernstein &  Cohen)

14

∴ Emergence of the seed population in the 
periphery (≠ magnetic axis) is consistent 

with a hollow E||/ED ratio 

• Described time-evolution of the main plasma 
profiles during the QRE density ramp-down. 

• E|| constrained with measurements @ wall (VLoop)

• E||/ED ratios are hollow reaching 2-5% at the 
core but 10-30% at r/a~0.8

0     0.2    0.4    0.6    0.8    1.0

               r/a
0     0.2    0.4    0.6    0.8     1.0

               r/a

P
la

sm
a 

de
ns

ity
 [1

018
 m

-3
]

0.5

1.0

2.5

2.0

1.5

0.1

0.2

0.5

0.4

0.3

N
or

m
al

iz
ed

 e
le

ct
ric

 fi
el

d

b) E||/ED

E||[V/m]

t=18 ms
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t=22 ms
t=24 ms
t=26 ms
t=28 ms
t=30 ms
t=32 ms
t=34 ms

a)

c) γRE 
[Eqn (1)]

d) γRE 
[Eqn (2)]
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Spatiotemporal temperature, density and electric field
models inferred from MST measurements 

Modeling and simulation of generation of runaway
electrons is MST

D.dCN

February 15, 2022

I. 3D TIME DEPENDENT MODEL

dp =
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E⇠ � CF +
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p2CA
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dt+
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dt+

p
2Dr(r) dWr . (3)

In writing the model we have used dimensionless variables. The time has been normalized

using the collisional time 1/⌫̃ee, where ⌫̃ee = ñe4 ln ⇤̃/4⇡✏20m
2
e
ṽ3
th

is the reference electron-

electron thermal collision frequency; the momentum has been normalized using mṽth, where

ṽth =

q
2T̃ /m is the reference electron thermal velocity; and the electric field has been

normalized using mṽth⌫̃ee/e = ẼD/2 where

ẼD =
ñe3 ln ⇤̃

4⇡✏20T̃
, (4)

is the reference Dreicer field, and

ẼCH =

 
T̃

mec2

!
ED , (5)

is the reference Connor-Hastie field.

II. MST REFERENCES VALUES

For the reference values we take the experimental fitted model at r = 0 and t = 0

T̃ = 0.075KeV , ñ = 2.4⇥ 10
18
m

�3 . (6)

The thermal velocity and thermal collisional frequency for these reference fields are

ṽth = 5.14⇥ 10
6
m/sec = 0.017 c , ⌫̃ee = 2.02⇥ 10

5
sec

�1 . (7)

1

Dreicer critical 
electric field

The density drop and 
the temperature rise 
at the at the edge lower 
the Dreicer field and 
promotes the creation 
of  seed REs there
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Dynamics of probability of runaway PRE in 3D phase space
(p,r) space for fixed pitch angle  z=0.95

(z,r) space for fixed momentum p=5 m vth

strong radial 
edge localization

n0 t=50 n0 t=100 n0 t=150 n0 t=200

n0 t=50 n0 t=100 n0 t=150 n0 t=200
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Quantitative agreement between BMC computations and 
MST observations

Off-axis RE formation 
in BMC computation

BMC computed 
Growth rate 
consistent with
experiment
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Dynamics of probability of runaway PRE in 3D phase space
(z ,p) space at the edge r/a=0.9

n0 t=50 n0 t=100

n0 t=200 n0 t=300
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Radial transport model
D.dCN

February 16, 2022

A. Advection-di↵usion equation

@u

@t
= �1

r

@

@r
(r�r) + �u+ S (1)

where the flux, �r is defined in cylindrical coordinates as

�r = vru�D
@u

@r
, (2)

� is the avalanche growth rate, and S the source.

B. Boundary conditions

1. Zero flux

�r|r=0,a = vru�D
@u

@r

����
r=0,a

= 0 . (3)

2. Dirichlet

u(a) = 0 , �r|r=0 = vru�D
@u

@r

����
r=0

= 0 . (4)

C. Mass conservation

dM

dt
� �M = Q , (5)

with

M =

Z a

0

u(r, t) r dtr , Q =

Z a

0

S(r, t) r dr , (6)

where we have used the volume element in cylindrical coordinates.

1

FIG. 1: Electron plasma density, temperature, electric field and poloidal magnetic field models. Time has

been normalized using the thermal collision frequency, ⌫0 = ⌫̃ee, in Eq. (??).

III. WARE PINCH MODEL

A possible way to explore the inward drift of the RE is with the Ware pinch. This is a

generic inward transport mechanism that explains how trapped particles in the presence of

a toroidal electric field can move towards the magnetic axis. The simplest estimate of the

Ware pinch is

vr = �
Ek

B✓
. (4)

Using the following typical values for MST, B✓ ⇠ 0.015 T and Ek ⇠ 0.15 V/m we have

vr ⇠ 10m/sec. According to this, in ⌧ ⇠ 25msec, we can cover a distance d ⇠ 0.25 m.

Which makes the Ware pinch a likely explanation of the production of RE in the core.

To develop a simple model of the Ware pinch, we simply use the models for the parallel

electric field and poloidal magnetic field discussed before. However, because by definition

2

~ -20 m/sec

Initial condition 
from BMC seed 
computation

Ware (inward) pinch

Exponential avalanche
growth

Diffusion

A heuristic model to describe the density peaking 
• Seed RE at the edge avalanche
• Fraction of new RE are trapped
• Trapped RE transported by Ware pinch
• As RE drift to the core they are de-trapped
[Nilsson et al., J. Plasma Phys (2015)]
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--- g= 671 Hz --- g= 751 Hz

Good qualitative agreement between heuristic model and 
MST observations
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NIMROD + KORC modeling of RE suppression in MST using RMPs

Test Particles in MST with RMPs 5

FIG. 4: Poincare plots of the magnetic topology at the (a)
high- and (b) low-n = 1 energy states shown in fig. 2 for the

MHD simulation without RMP.

III. TEST PARTICLE SIMULATION

In this section we present analysis of simulated particle
orbits of relativistic electrons. The Kinetic Orbit Runaway-
electron Code (KORC)28 is used to calculate particle orbits
in the plasma fields calculated by NIMROD. KORC has been
used in various studies of runaway electrons and is capable of
full-orbit or guiding center calculations including collisions
and synchrotron radiation29–31. Full-orbit computations use

FIG. 5: Evolution of volume-integrated magnetic fluctuation
energies of the indicated toroidal harmonics for the MHD
simulation with m = 3 RMP. The traces in (a) and (b) are

from different simulations, where the poloidal phase of the
RMP differs by p/2.

the relativistic equations of motion for charged particles.

d~x
dt

=~v (3)

d~p
dt

=�e

h
~E (~x)+~v⇥~B(~x)

i
(4)

where

~p = meg~v, (5)

g =
1q

1� v2

c2

(6)

Analysis considering the effects of frozen and dynamic field
topology are presented.

The REs produced in MST have relatively low kinetic en-
ergy. The energy of runaway electrons can be estimated from
the observed x-ray energy distribution of Bremstrahlung ra-
diation. The peak energy of the Bremstrahlung spectrum oc-
curs at approximately 25% of the incident energy for a mo-
noenergetic electron population37. Based on data presented
in Munaretto et al., the distribution of incident x-ray energy
appears to reach a maximum at roughly 7.5 eV. This indi-
cates that the electrons reach roughly 30 keV. A maximum

Test Particles in MST with RMPs 6

FIG. 6: Poincare plots of the magnetic topology at
high-energy states of the MHD simulations with m = 3 RMP

of (a) unshifted and (b) shifted poloidal phase. The data is
from the instances indicated with dashed lines in fig. 5.

detected x-ray with 30 keV also indicates this is an appro-
priate nominal RE energy since the maximum energy photon
from Bremstrahlung emission is the incident electron energy.
This is only an estimate since the FXR detector is not equally
sensitive to all x-rays. Its peak sensitivity is between 4 and
25 keV, but with few x-rays detected above 15 keV it can be
inferred there is not a large population of electrons with much
greater energy. For these energies, the electrons closely track
magnetic field lines and there are no strong drifts imposed. A
rough estimation of collisional effects can be done using the

classical formula38 since the electrons are not truly relativis-
tic, v

2

c2 ⇡ 0.1.

v
e|e
? lee

ne

⇡ 7.7⇥10�6
T e�

5
2 (7)

where lee is the Coulomb logarithm, temperature T and in-
cident energy e are in eV and electron density ne has units
cm�3. This indicates that the scattering time of electrons in
these plasma are > 10 ms, while diagnostics show suppres-
sion of runaway electrons in ⇡ 3 ms. Thus, collisional effects
are not considered in this study.

The following subsection describes the results of KORC
computations using representative particle energy, parti-
cle pitch-angle, and snapshots of magnetic field from the
MHD simulations and from RMP without plasma response.
Electric-field acceleration and variations in particle pitch-
angle and energy are then considered, separately. In sec-
tion III A 1, we consider the effects of magnetic field changing
over time.

A. Particle confinement in field snapshots

In order to test the hypothesis put forth in Munaretto et al.

regarding the synergistic role of sawteeth and RMP in decon-
fining REs, we use KORC to simulate the paths of an initial
population of electrons. For each computation presented, all
electrons are initialized with the same energy and pitch-angle.
Initial spatial distributions of electrons are uniform in a torus,
matching the geometry of MST up to some fraction of the mi-
nor radius. Seeding monoenergetic monopitch distributions of
initial electrons allows us to probe the characteristics of each
subpopulation of electrons independently.

An initial set of calculations was performed on the snap-
shots of magnetic fields that cover all combinations of cases
(no RMP, m = 1 RMP, and m = 3 RMP) and characteristic
time slices. The time slices are:

• equilibrium (EQ) with the vacuum RMP superimposed
when present

• high-energy phase (HEP) as a proxy for the peak of the
sawtooth

• low-energy phase (LEP) as a proxy for the end of the
sawtooth crash

Here, we refer to the high- and low-energy phases with re-
spect to kinetic energy fluctuations, and in particular, the ki-
netic energy tends to peak slightly after the magnetic fluctua-
tion energy, as visible in fig. 2. Because the associated mag-
netic data is from the MHD simulations (HEP and LEP), it
includes the self-consistent response to the RMP. The super-
posed equilibrium and vacuum RMP fields (EQ) do not in-
clude any response of the plasma to the external perturbation.
They provide an indication of the spatial extent of the RMP in
the absence of MHD activity.

Test Particles in MST with RMPs 3

FIG. 1: Comparison of low-density MST tokamak results without and with RMP. Frames (a) and (b) show the FXR signal for
energies � 5 keV (black) and the RMP amplitude measured by sensing coils inside the MST shell (red). Frames (c) and (d)
display the evolution of X-ray signal observed by the HXR array. The RMP applied for the (b) and (d) results has poloidal

wavenumber m = 3. OBTAIN PERMISSION FROM IOP!

in our computations is S = tr/tA = 9.4 ⇥ 104. We set the
viscous diffusivity to the same value for a magnetic Prandtl
number Pm = µ0n/h = 1. The numerical representation
uses a 32⇥ 32 poloidal mesh of bicubic elements, and most
computations have toroidal Fourier harmonics 0  n  10.
Resolution for the MHD and data used by KORC has been
checked with computations using 0  n  21, and no appre-
ciable change is observed in either the MHD or the electron
particle confinement.

While the Grad-Shafranov computation ensures that ~Jeq ⇥
~Beq = 0 for our force-free equilibrium, it does not ensure that
~—⇥

⇣
h~Jeq

⌘
= 0. Nonetheless, the timescale for resistive pro-

file evolution is longer than the MHD for the experiment’s flat-
top condition, so there is a separation of temporal scales with
respect to any inconsistency. Unless explicitly stated, further
reference to the magnetic field and current density is to the
sum of the perturbed and equilibrium components. Equilib-
rium data are read from the output of MSTfit34 computations
that are informed by density profiles from interferometry and
by edge magnetic data. The equilibrium is re-solved in the
NIMROD representation using the NIMEQ code.35

In computations that model RMP, the perturbations are ap-

plied as boundary conditions in NIMROD’s magnetic-field
evolution. The applied surface perturbation approximates a
rectangular pulse in toroidal angle f with characteristic length
lgap to represent the spatial locality imposed by the small gap
in MST’s shell:

n̂ ·~B
���
r=a

=
Brmp

pR
cos(mJ)


lgap

2

+ 2R0

N

2

Â
n=1

1
n

sin
✓

n
lgap

2R0

◆
cos(nf)

3

5 , (2)

where m is the poloidal wavenumber of the perturbation, Brmp
is its magnitude, R0 is the major radius, and lgap is the spatial
scale of the gap. We have chosen to truncate the Fourier series
of the RMP boundary condition at half of the largest toroidal
wavenumber used in the simulations.

All of the MHD computations use the same equilibrium,
which has the q-profile that is described in Sec. I. The equi-
librium represents the flat-top phase of the experiment. The
initial transient phase of the experiments, prior to 10 or 15
ms of figs. 2 and 4 of Ref. 14, is not modeled. Small
asymmetries are imposed in the initial conditions of compu-
tations without RMP to excite the linearly unstable (1,1) and
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energies � 5 keV (black) and the RMP amplitude measured by sensing coils inside the MST shell (red). Frames (c) and (d)
display the evolution of X-ray signal observed by the HXR array. The RMP applied for the (b) and (d) results has poloidal

wavenumber m = 3. OBTAIN PERMISSION FROM IOP!

in our computations is S = tr/tA = 9.4 ⇥ 104. We set the
viscous diffusivity to the same value for a magnetic Prandtl
number Pm = µ0n/h = 1. The numerical representation
uses a 32⇥ 32 poloidal mesh of bicubic elements, and most
computations have toroidal Fourier harmonics 0  n  10.
Resolution for the MHD and data used by KORC has been
checked with computations using 0  n  21, and no appre-
ciable change is observed in either the MHD or the electron
particle confinement.

While the Grad-Shafranov computation ensures that ~Jeq ⇥
~Beq = 0 for our force-free equilibrium, it does not ensure that
~—⇥

⇣
h~Jeq

⌘
= 0. Nonetheless, the timescale for resistive pro-

file evolution is longer than the MHD for the experiment’s flat-
top condition, so there is a separation of temporal scales with
respect to any inconsistency. Unless explicitly stated, further
reference to the magnetic field and current density is to the
sum of the perturbed and equilibrium components. Equilib-
rium data are read from the output of MSTfit34 computations
that are informed by density profiles from interferometry and
by edge magnetic data. The equilibrium is re-solved in the
NIMROD representation using the NIMEQ code.35

In computations that model RMP, the perturbations are ap-

plied as boundary conditions in NIMROD’s magnetic-field
evolution. The applied surface perturbation approximates a
rectangular pulse in toroidal angle f with characteristic length
lgap to represent the spatial locality imposed by the small gap
in MST’s shell:
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where m is the poloidal wavenumber of the perturbation, Brmp
is its magnitude, R0 is the major radius, and lgap is the spatial
scale of the gap. We have chosen to truncate the Fourier series
of the RMP boundary condition at half of the largest toroidal
wavenumber used in the simulations.

All of the MHD computations use the same equilibrium,
which has the q-profile that is described in Sec. I. The equi-
librium represents the flat-top phase of the experiment. The
initial transient phase of the experiments, prior to 10 or 15
ms of figs. 2 and 4 of Ref. 14, is not modeled. Small
asymmetries are imposed in the initial conditions of compu-
tations without RMP to excite the linearly unstable (1,1) and

S. Munaretto et al., Nuclear Fusion 60, 
046024 (2020) 

B. Cornille et al. Phys. Plasmas (2022).

RE avoidance problem:

MST

m=3 RMP

No RMP

MST

Test Particles in MST with RMPs 7

(a) 0.1 ms of simulation time.

(b) 1 ms of simulation time.

FIG. 7: In a we show the confinement of all nine
computational field snapshots up to 0.1 ms. Labels without m

have no applied RMP. The time is extended to 1 ms in b and
only the m = 3 results are displayed. An initial distribution

up to 98% of the minor radius was used. Electrons were
initialized with 30 keV kinetic energy and pitch angle of

170�. Only the Lorentz force in eq. (4) was used.

In fig. 7 we show the confinement of 30 keV electrons with
a pitch angle of 170� (10� angle from the field line and mov-
ing antiparallel to the magnetic field) without the electric field
term in eq. (4). From these data, it is clear that the structure
of the magnetic field contributes strongly to the overall con-
finement of electrons at this energy. The cases without RMP
and an m = 1 RMP show minimal to no additional electron
loss after the initial prompt loss from the original distribution.
The loss of electrons over a longer timescale in the m = 3 case
indicates chaotic fields are responsible for the bulk of the de-
confinement. Given the initial distribution of electrons evenly
spread across 98% of the minor radius, we observe approx-
imately 50% loss from the m = 3 RMP compared to the 10-

(a)

(b)

FIG. 8: In the high-energy phase of the m = 3 case we show
the final a and initial b spatial distributions for confined

particles with 1 ms simulation time. Particle are binned by
their location projected to the (R,Z)-plane. There were

50,000 particles initialized. The corresponding Poincaré
sectio is shown in white.

15% loss of the m= 1 RMP. The full deconfinement suggested
by the x-ray measurements in the experiment is not observed.

We can also directly observe which electrons remain in the
simulation. From fig. 8a we see that the chaotic region is de-
pleted of electrons. We also see that the core structure from
the sawtooth activity has modified the radial distribution of
these electrons. This provides some evidence that the saw-
tooth behavior modifies the spatial distribution of core parti-
cles. Figure 9a shows that lost particles all originate from the
chaotic region. There is also a strongly localized region where
particles tend to accumulate. Since the static field structure
is confining for a variety of electron energy and pitch angle,
effects beyond the instantaneous magnetic topology must be
considered.

In agreement with the experiment 
NIMROD + KORC simulations
show RE deconfinement with 
m=3 but not with m=1

However, contrary to the experiment,
total RE loss not observed
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Test Particles in MST with RMPs 6

FIG. 6: Poincare plots of the magnetic topology at
high-energy states of the MHD simulations with m = 3 RMP

of (a) unshifted and (b) shifted poloidal phase. The data is
from the instances indicated with dashed lines in fig. 5.

detected x-ray with 30 keV also indicates this is an appro-
priate nominal RE energy since the maximum energy photon
from Bremstrahlung emission is the incident electron energy.
This is only an estimate since the FXR detector is not equally
sensitive to all x-rays. Its peak sensitivity is between 4 and
25 keV, but with few x-rays detected above 15 keV it can be
inferred there is not a large population of electrons with much
greater energy. For these energies, the electrons closely track
magnetic field lines and there are no strong drifts imposed. A
rough estimation of collisional effects can be done using the

classical formula38 since the electrons are not truly relativis-
tic, v

2

c2 ⇡ 0.1.

v
e|e
? lee

ne

⇡ 7.7⇥10�6
T e�

5
2 (7)

where lee is the Coulomb logarithm, temperature T and in-
cident energy e are in eV and electron density ne has units
cm�3. This indicates that the scattering time of electrons in
these plasma are > 10 ms, while diagnostics show suppres-
sion of runaway electrons in ⇡ 3 ms. Thus, collisional effects
are not considered in this study.

The following subsection describes the results of KORC
computations using representative particle energy, parti-
cle pitch-angle, and snapshots of magnetic field from the
MHD simulations and from RMP without plasma response.
Electric-field acceleration and variations in particle pitch-
angle and energy are then considered, separately. In sec-
tion III A 1, we consider the effects of magnetic field changing
over time.

A. Particle confinement in field snapshots

In order to test the hypothesis put forth in Munaretto et al.

regarding the synergistic role of sawteeth and RMP in decon-
fining REs, we use KORC to simulate the paths of an initial
population of electrons. For each computation presented, all
electrons are initialized with the same energy and pitch-angle.
Initial spatial distributions of electrons are uniform in a torus,
matching the geometry of MST up to some fraction of the mi-
nor radius. Seeding monoenergetic monopitch distributions of
initial electrons allows us to probe the characteristics of each
subpopulation of electrons independently.

An initial set of calculations was performed on the snap-
shots of magnetic fields that cover all combinations of cases
(no RMP, m = 1 RMP, and m = 3 RMP) and characteristic
time slices. The time slices are:

• equilibrium (EQ) with the vacuum RMP superimposed
when present

• high-energy phase (HEP) as a proxy for the peak of the
sawtooth

• low-energy phase (LEP) as a proxy for the end of the
sawtooth crash

Here, we refer to the high- and low-energy phases with re-
spect to kinetic energy fluctuations, and in particular, the ki-
netic energy tends to peak slightly after the magnetic fluctua-
tion energy, as visible in fig. 2. Because the associated mag-
netic data is from the MHD simulations (HEP and LEP), it
includes the self-consistent response to the RMP. The super-
posed equilibrium and vacuum RMP fields (EQ) do not in-
clude any response of the plasma to the external perturbation.
They provide an indication of the spatial extent of the RMP in
the absence of MHD activity.

Modeling of RMP suppression of RE using BMC 

m=3 RE suppression in MST m=3 B field stochasticity in NIMROD

The di↵usion model will be

Dr = D0 F (r, t) , F (r, t) =
1

2

⇢
1 + tanh


r � rD
LD

��
(14)

Dr =
D0

2

⇢
1 + tanh


r � rD
LD

��
(15)

Example of integration parameter values

pmin = 1 pmax = 10 tmax = 3000 . (16)

where Nxi and Np are the number of grid points in ⇠ and p, and Nt is the number of time

slices. This I let you up to decide.

2

D0 ~( d B / B )2

Simple model in BMC

Delgado-Aparicio, et al Submitted to 
PRL (2022) Invited Talk Wed 10:00 AM
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D=0.0001

D= 0.1 m2/secD=0 D= 10 m2/sec

x 105m2/sec

x 105m2/sec

Modeling of RMP suppression of RE using BMC 
(p,r) space for fixed pitch angle  z=0.95
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D=0.0001

D= 0.1 m2/secD=0 D= 10 m2/sec

D= 0.1 m2/secD=0 D= 10 m2/sec

Modeling of RMP suppression of RE using BMC 
(p, z) space at the edge r/a=0.95

(z,r) space for fixed momentum p= 5 m vth
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DIFFUSION, COOLING, AND ELECTRIC FIELD MODELS

I Rechester-Rosenbluth type radial di↵usion model

D = D̂0 F (r)G (p) , D̂0 = ⇡qvkR

✓
�B

B

◆2

,

with spatial and momentum dependence

F (r) =
1

2

⇢
1 + tanh


r � rD

LD

��
, G (p) = e�(p/�p)2 .

I Exponential cooling model with thermal quench time scale t⇤

T̂ = T̂f +
⇣
T̂0 � T̂f

⌘
e�t/t⇤ ,

I Electric field dependence from Ohms’s law and Spitzer
conductivity

E (t) = E0

"
T̂0

T̂ (t)

#3/2

.

Modeling of RE generation in thermal quenched plasmas
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Seed RE production has a strong dependence on thermal quench time
and initial temperature

There is a weaker dependence on Z 

Diffusion reduces the gradient of the radial seed density profile at the 
edge and this effect increases with the termal quench time 

The onset of the saturation of the 
seed runaway is significantly affected 
by the thermal quench time scale 

D. del-Castillo-Negrete, et al., 
28th IAEA Conference.(2021)  
IAEA-CN-286/101. 

RE generation problem: Dependence on thermal quench time scale

3D time-dependent BMC simulations



28

DEL-CASTILLO-NEGRETE et al. 

 
5 

rate of decrease is significantly enhanced as the plasma boundary is approached; a direct manifestation of electrons 
losing confinement before they can accelerate to runaway energies. This effect is also observed in Fig.3-(b) that 
shows a flattening of the radial profile of the production rate as the diffusivity increases. However, as Fig.3-(c) 
shows, the value of the diffusivity does not affect significantly the onset time of the runaway production. 
 

 
FIG. 3. Dependence of seed runaway electron density on normalized constant radial diffusivity, D0. Panel (a) shows the seed 
density at the magnetic axis, nRE(0), normalized with the plasma density, n0, as function of D0 at different radii. Panel (b) shows 
the seed density as function of r, normalized by the value at r=0, for different values of D0. Panel (c) shows the time evolution 
of the seed density at r=0 normalized with the plasma density, n0, for different values of D0. In all these simulations, Z=1, n0 
t*=3, TM=3 keV, E0=10-3 and Dp=2. 
 
Figure 4 shows the dependence of the production rate on the electric field amplitude. As expected, and as observed 
in previous studies, the production rate grows at an almost linear rate (note however that Fig.4(a) has a log-linear 
scale). The role of the radial diffusion in this case is shown in the normalized radial profile of the production rate 
in Fig.4(b). It is observed that, as the electric field decreases the profiles become slightly shallow due to the loss 
of confinement before runaway acceleration. In addition to its role in the amplitude of the production rate, as 
Fig.4(c) shows the electric field can also significantly delay the onset of the seed RE generation. 

 

 
FIG.4. Dependence of seed runaway electron density on electric field at t=0, E0, normalized with ED/2 where ED is the 
Dreicer field. Panel (a) shows the seed density at the magnetic axis, nRE(0), normalized with the plasma density, n0, as 
function of E0. Panel (b) shows the seed density as function of r, normalized by the value at r=0, for different values of E0. 
Panel (c) shows the time evolution of the seed density at r=0 normalized with the plasma density, n0, for different values of 
E0. In all these simulations, Z=1, n0 t*=3, TM=3 keV, D0=0.01 and Dp=2. 

 
Up to now the diffusivity has been assumed constant. However, MHD simulations indicate that during the thermal 
quench the magnetic field stochasticity tends to concentrate near the edge. To study this effect Fig.5(a) shows the 
production rate radial profile for the spatially dependent diffusivity model where rm denotes the approximate 
location of the last closed flux surface, which in the Rechester-Rosenbluth model translates into the critical radius 
beyond which radial diffusion is significant. It is observed that as rm increases, the production rate develops a 
pedestal near the edge. Another interesting effect is the dependence of the diffusivity on the momentum. 
Numerical results indicate that the radial diffusion caused by magnetic field stochasticity tends to decrease when 
the momentum decreases. To capture this effect, we adopt a heuristic model that assumes an exponential decay 
of D0 with p. Figure 5(b) shows the radial profile of the production rate for different values of the Dp parameter. 
The limit Dp à0 corresponds to no diffusivity and as expected the production rate is flat and large. As Dp 
increases, radial diffusion is suppressed.  
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(b)
(b)(a) (c)

 IAEA-CN-286/1011  
 

 
 

 
FIG. 5. Seed runaway electron density as function of r for different radial profiles (a), and different momentum dependences 
(b) of the radial diffusivity. The parameter rm determines the boundary of the stochastic magnetic field, and the parameter Dp 
determines the strength of the momentum dependent diffusion suppression. In all these simulations, E0 =10-3, Z=1, n0 t*=3, 
TM=3 keV, D0=0.01 and Dp=2. 
 
3. MITIGATION OF RUNAWAY ELECTRONS BY HIGH Z IMPURITY INJECTION 

In this section, we present results on the modelling and simulation of RE mitigation by Ne MGI secondary 
impurity injection into the post-disruption RE plateau beam of DIII-D discharge #164409.  Further information 
and a more complete discussion of can be found in [7]. Here, we limit attention to the role played by the loss of 
spatial confinement of the RE during the impurity-based dissipation. The computational tool is an upgraded 
version [7] of the Kinetic Orbit Runaway electron Code (KORC) [6] that incorporates time dependent magnetic 
reconstructions, linearized Coulomb collision operator with effects of partially-ionized impurities, line-integrated 
electron density measurements fit to a spatiotemporal model, and different neutral impurity transport models. The 
toroidal inductive electric field calculated from JFIT magnetic reconstructions using !! = −1/2'(	*+"/*,, 
agrees well with experimental loop voltage measurements. All partially-ionized charge states are assumed to have 
the same profile as electrons, with -#$!" -#$!#⁄ = 2 for DIII #164409. The RE initial condition corresponds to a 
10	MeV monoenergetic and 100 monopitch beam distributed uniformly within the sampling domain limited by a 
prescribed flux surface. As shown in Fig.6, KORC simulations agree well with the experimental results. The decay 
of the current is not only driven by the impurity induced energy dissipation of the RE beam (green trace in Fig.6); 
the loss of confinement (red trace in Fig. 6) plays also an important role, as well as the diffusion of the pitch angle 
(not shown) that leads to a reduction of the parallel component of the velocity contributing to the RE toroidal 
current. 
  

 
 
FIG.6 Left panel shows the time evolution of the spatiotemporal electron density profile model used in the KORC RE 
dissipation calculations overlaid with black contours corresponding to the JFIT experimental reconstruction of the 
instantaneous poloidal flux. Right panel shows a comparison of the experimentally measured RE current in DIII-D #164409 
(dashed black line) and the KORC simulation (solid black line). Also shown are the RE energy (green line) and the evolution 
of the RE lost to the wall (red) and those thermalized, i.e., when the momentum drops below $%&. (blue).(Adapted from [7]). 
 

(b)(a)

D
II

I-
D

 #
16

44
09

JE
T 

#9
51

28

1.41 1.42 1.43 1.44 1.45
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
DIII-D #164409

48.47 48.48 48.49 48.5 48.51 48.52
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
JET #95128JET #95128DIII-D #164409

 IAEA-CN-286/1011  
 

 
 

 
FIG. 5. Seed runaway electron density as function of r for different radial profiles (a), and different momentum dependences 
(b) of the radial diffusivity. The parameter rm determines the boundary of the stochastic magnetic field, and the parameter Dp 
determines the strength of the momentum dependent diffusion suppression. In all these simulations, E0 =10-3, Z=1, n0 t*=3, 
TM=3 keV, D0=0.01 and Dp=2. 
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RE seed production decreases when D0  (normalized by 104 m2/s) 
increases and this effect is stronger at the edge 

Model for spatial and mometum dependent diffusivity:

DEPENDENCE OF SEED RUNAWAY ELECTRONS ON
MOMENTUM AND RADIAL DEPENDENCE OF DIFFUSIVITY

As a simple model of the increased stochasticity at the edge and
the suppression of di↵usion for high energy RE we consider

D(r , p) =
D0

2

⇢
1 + tanh


r � rm

LD

��
e�(p/�p)2

where D0 is the Rechester-Rosenbluth di↵usivity
 IAEA-CN-286/1011  

 

 
 

 
FIG. 5. Seed runaway electron density as function of r for different radial profiles (a), and different momentum dependences 
(b) of the radial diffusivity. The parameter rm determines the boundary of the stochastic magnetic field, and the parameter Dp 
determines the strength of the momentum dependent diffusion suppression. In all these simulations, E0 =10-3, Z=1, n0 t*=3, 
TM=3 keV, D0=0.01 and Dp=2. 
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of the current is not only driven by the impurity induced energy dissipation of the RE beam (green trace in Fig.6); 
the loss of confinement (red trace in Fig. 6) plays also an important role, as well as the diffusion of the pitch angle 
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FIG.6 Left panel shows the time evolution of the spatiotemporal electron density profile model used in the KORC RE 
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FIG. 5. Seed runaway electron density as function of r for different radial profiles (a), and different momentum dependences 
(b) of the radial diffusivity. The parameter rm determines the boundary of the stochastic magnetic field, and the parameter Dp 
determines the strength of the momentum dependent diffusion suppression. In all these simulations, E0 =10-3, Z=1, n0 t*=3, 
TM=3 keV, D0=0.01 and Dp=2. 
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FIG.6 Left panel shows the time evolution of the spatiotemporal electron density profile model used in the KORC RE 
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Location rm of diffusive transport barriers leads to pedestal in RE 
production rate   profile 

High momentum suppression of diffusive 
transport introduce momentum 
dependent production rate radial profiles

RE generation problem: Dependence on radial diffusive transport

3D time-dependent BMC simulations
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