Validation and verification of continuum ions and REs in NIMROD*

Eric Held, J. Andrew Spencer, Tyler Markham, Gavin Held

Department of Physics **UtahState**University

CTTS Meeting APS-DPP, October 16, 2022, Spokane, WA

*Work supported by DOE under grant nos. DE-FG02-04ER54746, and DE-SC0018146.

Outline

 Early results of NIMROD/M3D-C1 benchmark using DIII-D discharge #141216.

► Phase space tests of NIMROD's continuum RE implementation.

► Formulation of continuum REs for linear (2,1) tearing mode in cylinder.

Ideal internal kink benchmark between NIMROD and M3D-C1.

Brochard et al. (Nucl. Fusion 62 (2022) 036021) benchmarks several codes on an ideal internal kink in DIII-D discharge #141216.

Figure 1. Experimental spectrogram in ms measured on the DIII-D discharge #141216. The first toroidal harmonics from n = 1 to 3 are respectively displayed in black, red and blue. A clear n = 1 internal kink mode appears around t = 1750 ms, while a n = 1 fishbone mode emerges at $t \sim 1890$ ms.

Okay agreement in ideal growth rates.

Figure 3. On-axis beta-scan of the internal kink growth rate obtained from the different codes, in the ideal MHD limit. An excellent quantitative agreement is obtained between codes using MHD and gyrokinetic formalisms.

Good agreement for δB_{\parallel} eigenfunction.

• δB_{\parallel} (finite- β effects) important in these computations^{*}.

*Graves et al., Plasma Phys. Control. Fusion 61 (2019) 104003

Good agreement for δB_{\perp} eigenfunction.

Future work on DIII-D discharge #141216

- Obtain better agreement between NIMROD and M3D-C1 on ideal kink growth rates.
- Follow up on M3D-C1 efforts with thermal ion kinetic effects using NIMROD's ion CEL-DKE continuum kinetic capability.
- Trevor Taylor successfully defended his thesis, "Serendipity shape functions for hybrid fluid/kinetic-PIC simulations" in September.

Continuum kinetics for REs in NIMROD

Relativistic electron kinetic equation implemented in NIMROD:

streaming:
$$\frac{\partial f}{\partial t} + \frac{cp}{\gamma} \left[\xi \nabla_{\parallel} - \frac{1}{2} \left(1 - \xi^2 \right) \nabla_{\parallel} \ln B \frac{\partial}{\partial \xi} \right] f + \mathbf{v}_D \cdot \nabla f$$

acceleration: $-\frac{eE_{\parallel}}{mc} \left[\xi \frac{\partial f}{\partial p} + \frac{1 - \xi^2}{p} \frac{\partial f}{\partial \xi} \right]$
synchrotron: $-\frac{1}{\tau_r} \frac{1 - \xi^2}{\gamma} \left[\gamma^2 p \frac{\partial f}{\partial p} - \xi \frac{\partial f}{\partial \xi} + (4p^2 + \frac{2}{1 - \xi^2}) f \right]$

collisions, avalanche source : = $C_c(f) + S_A$,

where $p = \gamma m v / (mc)$, $\gamma = \sqrt{1 + p^2}$, $\xi = p_{\parallel}/p$, and $\tau_r = 6\pi\epsilon_0 (mc)^3 / (e^4 B^2)$ is the radiation time-scale^{*}.

- Phase space discretization uses finite elements in ξ and a colocation method in p.
 - *A. Stahl, et al., CPC 212 (2017) 269-279

Continuum kinetics for REs in NIMROD

- Completed: phase space tests of acceleration, synchrotron radiation and linearized relativistic collision operator terms.
 - 1. Free acceleration test used to determine required phase space resolution.
 - 2. Partial verification on phase space vortex problem: steady-state balance of acceleration, synchrotron and collision terms.
 - 3. Tested collisional relaxation of shifted Maxwell-Jüttner distribution.
- Underway:
 - 1. Implementing fully nonlinear, BK formulation of relativistic collision operator in NIMROD (Tyler Markham defends PhD thesis this coming December).
 - 2. Verifying nonlinear BK operator with results from NORSE code.
 - Implementing coupling of RE current into NIIMROD's Ohms Law for linear tearing mode studies for comparison with growth rates and real frequencies predicted by NIMROD and M3D-C1 RE fluid models.

Phase space free-acceleration test

Free acceleration test shows importance of phase space resolution.

Phase space vortex problem

Balance of acceleration, synchrotron radiation and linearized collision terms in steady state. *

*Z. Guo, C. J. McDevitt, X.-Z. Tang, PPCF 59 (4) (2017) 044003

Shifted $f_{\rm MJ}$ used to test linearized collision operator

Shifted Maxwell-Jüttner distribution:

$$f_{\mathrm{M}J}(z,p_b) = \frac{zn_0}{4\pi K_2(z)} e^{-z(\gamma\gamma_b - p_b p\xi)}$$

where
$$\xi=p_{\parallel}/p,$$
 $\gamma_b=\sqrt{1+p_b^2},$ with $p_b=\gamma_b v_b/c.$

The moment

$$\frac{n_0}{\gamma_b} = 4\pi \int_{-1}^1 d\xi \int_0^\infty dp p^2 f_{\rm MJ}(z, p_b)$$

returns the density in the moving frame.

► The momentum moment

$$p_{b} = \frac{2\pi\gamma_{b}}{n_{0}} \int_{-1}^{1} d\xi \xi \int_{0}^{\infty} \frac{dp}{\gamma} p^{3} f_{\mathrm{M}J}(z, p_{b})$$

returns the momentum shift, p_b , of the distribution.

Collisional relaxation of shifted f_{MJ} distribution.

Figure: Shifted f_{MJ} after $t = 0.01\tau_c$ has elapsed. Gridlines depict 7th-order polynomials in 3 FE cells in ξ and np=40 points in p. Right plot shows convergence in the energy moment (W, left axis) and parallel flow (U_{\parallel}/c , right axis), as functions of time for np =20 and 40.

RE fluid models useful for simulating MHD-RE coupling.

- Several codes have recently investigated RE effects on tearing:
 - 1. JOREK, V. Bandaru et al., PRE 99, 1-11 (2019)
 - 2. M3D-C1, C. Liu et al, PoP 27, 10.1063/5.0018559 (2020)
 - 3. NIMROD, A. Santerme and C. Sovinec (this meeting, 2022)
- ▶ NIMROD (left) and M3D-C1 (right) 2/1 tearing mode growth rates.

13/19

Tearing benchmark of fluid and continuum RE formulations in NIMROD

NIMROD's linearized fluid formulation without perturbed drift terms:

$$\frac{\partial n_r}{\partial t} + c_r \nabla \cdot n_r \mathbf{b}_0 = -c_r \nabla \cdot N_r \delta \mathbf{b}$$
$$\frac{\partial \mathbf{B}}{\partial \mathbf{B}} = -\nabla \times \begin{bmatrix} \delta \mathbf{E} & \mathbf{i} + n(1 - \nabla \times \delta \mathbf{B}) - n(n-1) \mathbf{i} \\ \delta \mathbf{E} & \mathbf{i} + n(1 - \nabla \times \delta \mathbf{B}) - n(n-1) \mathbf{i} \\ \delta \mathbf{E} & \mathbf{i} \\ \delta \mathbf$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left[\delta \mathbf{E}_{\text{ideal}} + \eta \left(\frac{1}{\mu_0} \nabla \times \delta \mathbf{B} - q_e c n_r \mathbf{b}_0 - q_e c N_r \delta \mathbf{b} \right) \right]$$

Analogous kinetic formulation:

$$\begin{split} \frac{\partial f_r}{\partial t} &+ \frac{cp}{\gamma} \left[\xi \mathbf{b}_0 \cdot \nabla - \frac{1}{2} \left(1 - \xi^2 \right) \nabla_{\parallel} \ln B_0 \frac{\partial}{\partial \xi} \right] f_r = \\ &- \frac{cp}{\gamma} \left[\xi \delta \mathbf{b} \cdot \nabla - \frac{1}{2} \left(1 - \xi^2 \right) \delta(\nabla_{\parallel} \ln B) \frac{\partial}{\partial \xi} \right] F_r + \frac{e \delta E_{\parallel}}{mc} \left[\xi \frac{\partial}{\partial p} + \frac{1 - \xi^2}{p} \frac{\partial}{\partial \xi} \right] F_r \\ &\frac{\partial \mathbf{B}}{\partial t} = - \nabla \times \left[\delta \mathbf{E}_{\text{ideal}} + \eta (\frac{1}{\mu_0} \nabla \times \delta \mathbf{B} - j_r \mathbf{b}_0 - J_r \delta \mathbf{b}) \right] \end{split}$$

Use shifted $f_{\mathrm{M}J}$ for tearing problem

► $F_r(z, p_b) = f_{MJ}$ is normalized so that the RE current, $J_r = q_e \frac{n_0}{\gamma_b} cp_b$, returns a fraction of the initial current. Here, z = 100, $p_b = 0.67$, $v_b/c = 0.56$, $v_A/c = 0.0033$.

S=1e5 case looked promising (green symbols).

Details of continuum kinetic RE setup:

- 1. 10 speed grid points, 5 cells with 5th-order GLL polynomials in ξ .
- 2. fully implicit advance of f_r with $dt \sim \tau_A$.
- 3. f_r centered in time with n, **B** and T.
- 4. converged eigenfunction takes 10 minutes on 100 Cori cores

Converged eigenfunction for perturbed f_r similar to $F_r(t=0)$.

But, RE current looks sketchy.

- Need a little spatial diffusion?
- Need to go higher in $p_b = 0.67$ ($v_b/c = 0.56$, $v_A/c = 0.0033$)?
- Implement simultaneous (fr, B) advance using Picard iteration?

Future Work.

- Obtain better agreement between NIMROD and M3D-C1 on ideal kink growth rates for DIII-D discharge #141216.
- Follow up on M3D-C1 efforts with thermal ion kinetic effects using NIMROD's ion CEL-DKE continuum kinetic capability.
- Modify linear V and Fhot routine for a simultaneous B and Fhot_RE advance and carry out benchmark of RE effects on linear tearing with NIMROD's RE fluid model.