<u>E.C. Howell¹</u>, J.R. King¹, J.D. Callen², R.J. La Haye³ ¹Tech-X, ²University of Wisconsin, ³General Atomics

Fall CTTS Meeting Spokane WA, October 16, 2022

Work Supported by US DOE under grants: DE-SC0018313, DE-FC02-04ER54698, DE-FG02-86ER53218

Computational support provided by NERSC

Neoclassical Tearing Modes (NTMs) are a leading <u>physics</u> cause of disruptions

- Pressure-gradient driven bootstrap current destabilizes NTM¹
 - Current caused by drag of passing electrons on trapped electrons
- Seed Island generated by helical current perturbation
- Transport flattens pressure across island
 - Resulting missing helical bootstrap current perturbation reinforces island current
- Large islands degrade confinement and trigger disruptions

Nonlinear simulations are needed to understand NTM physics

- Modified Rutherford Equation (MRE): standard tool for understanding NTMs
 - $\frac{\rho_0}{D_\eta} \frac{dw}{dt} = \rho_0 \Delta' + \frac{\rho_{0d_{NTM}}}{w} \frac{\rho_0 w_{polF(f_m)}^2}{w^3} + \cdots$
 - Assumes single helicity thin island
- Many important issues occur where MRE is insufficient
 - Transient seeding: sawteeth, ELM's
 - Seeding via 3-mode interactions
 - Disruption trigger via island overlap
 - Island bifurcation impact on ECCD

Seeding via 3-mode interactions¹

¹L. Bardóczi, PRL 127 (2021)

Simulations study NTM physics experimentally relevant equilibria

- Use reconstructions of DIII-D ITER baseline scenario discharge^{1,2}
 - ELM at 3396ms triggers 2/1 NTM
 - -NTM locks in ~100ms
- High resolution measurements enable high fidelity kinetic reconstruction
 - Realistic n_e , T_e , P, J, Ω profiles
 - -ITER shaping

¹La Haye, NF (2022)

²Callen, APS-DPP TI02:00005 (2020)

Simulations initialized with kinetic reconstruction immediately prior to NTM seeding and growth

Parameters at q=2	NIMROD	Experiment
S	2.5x10 ⁶	7.9x10 ⁶
Pr _M	23	11
$(\chi_{\parallel}/\chi_{\perp})^{1/4}$	100	260
$\mu_e/(\nu_{ei}+\mu_e)$	0.55	0.45

- Normalized parameters are within a factor of 3 at 2/1 surface
- Reconstructed toroidal and poloidal flows are required for ELM stability
- Fix $|q_0| > 1$ to avoid 1/1

- Closures¹ used in resistive MHD²
 - Generalizes to x-MHD
- Models dominant neoclassical effects
 - Bootstrap current drive
 - Poloidal ion flow damping
- Closures depend on quantities
 available in fluid simulations

 $\frac{\mathrm{Dn}_{\mathrm{e}}}{\mathrm{Dt}} = -\mathrm{n}_{\mathrm{e}}\nabla\cdot\vec{\mathrm{V}}$ $\rho \frac{\mathbf{D} \vec{\mathbf{V}}}{\mathbf{D} \mathbf{t}} = -\nabla \mathbf{p} + \vec{\mathbf{J}} \times \vec{\mathbf{B}} - \nabla \cdot \vec{\vec{\mathbf{\Pi}}}_{\mathbf{i}} - \nabla \cdot \vec{\vec{\mathbf{\Pi}}}_{\text{Classical}}$ $\frac{\mathbf{n}_{s}}{\Gamma_{s}-1}\left(\frac{\mathrm{d}\mathbf{1}_{s}}{\mathrm{d}t}+\vec{\mathbf{V}}\cdot\nabla\mathbf{T}_{s}\right) = -\Gamma\mathbf{p}_{s}\nabla\cdot\vec{\mathbf{V}}-\nabla\cdot\vec{\mathbf{q}_{s}}$ $\frac{\partial \vec{B}}{\partial t} = -\nabla \times \left(-\vec{V} \times \vec{B} + \eta \vec{J} - \frac{1}{n_e e} \nabla \cdot \vec{\Pi}_e \right)$ $\nabla \cdot \vec{\overline{\Pi}}_{i} = \mu_{i} n_{i} m_{i} \langle B_{eq}^{2} \rangle \frac{\vec{V} \cdot \vec{e}_{\Theta}}{\left(\vec{B}_{eq} \cdot \vec{e}_{\Theta}\right)^{2}} \vec{e}_{\Theta}$ $\boldsymbol{\nabla}\cdot\vec{\overrightarrow{\Pi}}_{e} = -\mu_{e}\frac{n_{e}m_{e}}{n_{e}e}\langle B_{eq}^{2}\rangle\frac{\vec{J}\cdot\vec{e}_{\Theta}}{\left(\vec{R}_{eq}\cdot\vec{e}_{O}\right)^{2}}\vec{e}_{\Theta}$

- ¹T. Gianakon, et al., PoP 9 (2002)
- ²C. Sovinec, et al., JCP 195 (2004)

Prior work¹: NTM grows in two phases following applied perturbation

- Applied 1ms magnetic perturbation (MP) pulse seeds growing NTM
 - Surrogate for MHD transient (e.g. ELMs)
- Slow growth: driven by nonlinear multi-mode interactions
 - Pulse excites cascade of n>1 core modes in addition to n=1
- **<u>Robust growth</u>**: standard growth described by MRE

```
<sup>1</sup>E.C. Howell, et al., PoP 29 (2022)
```

$$\widetilde{\psi}_{m,n} = \oint \oint J\widetilde{B} \cdot \nabla \psi_0 \exp(in\phi - im\Theta) d\Theta d\phi$$

E.C. Howell/CTTS 2022

Model improvements enable higher fidelity studies: <u>1) Realistic Wall</u>

 Prior Work: Computational domain extends to last closed flux surface

- Wall stabilizes edge modes

- New wall approximates DIII-D's vacuum vessel
 - Results presented use a perfectly conducting wall boundary (blue)
 - Resistive Wall simulations are progressing

Computational Domain

Model improvements enable higher fidelity studies: 2) Spatially dependent neoclassical damping profiles

- Previous: uniform μ_i and μ_e
 - Overestimates bootstrap current drive near axis
- Radial μ_s formula^{1,2} extrapolates across collisionality regimes

$$\mu_{s} = \frac{\nu_{s}(f_{t}/f_{c})K_{s}^{B}}{\left[1 + \nu_{*s}^{1/2} + 2.92\nu_{*s}\frac{K_{s}^{B}}{K_{s}^{P}}\right]\left[1 + \frac{2K_{s}^{P}}{3\omega_{ts}\tau_{ss}K_{s}^{PS}}\right]}$$

- Profiles smoothly fit to zero outside q~2.5 to avoid large μ_s gradients in the pedestal
- ¹Y.B. Kim et al., PFB 3 (1991); errata 4

²Callen CPTC report 096-rev1 (2010)

Applied perturbation excites larger n=1 response in realistic wall simulations compared to close fitting wall simulations

- Applied perturbation calculated using identical coil currents
- Enhanced response illustrates the larger response for a realistic wall
- Robust 2/1 growth occurs immediately after pulse with realistic wall
 - Core modes grow large after 2/1 is large

Modulations in n=1 resonant flux magnitude highlights nonlinear poloidal mode interactions

- Oscillations have little impact on linear 2/1 growth
- Early modulations in 4/1 and 2/1 resonant flux magnitude are in sync
 - Differential rotation modulates coupling between unstable islands¹
- 4/1 and 3/1 lock starting around 2.5 ms
 - 4/1 amplitude decays after locking to 3/1

¹R. Fitzpatrick, et al., NF 33 (1993)

Oscillations in ψ_{31} profile coincide with resonant ψ_{31} modulations

- Local max: ψ_{31} profile spans region between q=2 and q=3
- Local min: ψ_{31} profile has two peaks at q=2 and q=3
- Similar profile oscillations observed in ψ_{41} radial profile at q=2 and q=3

Torque induced by interaction with 3/1 accelerates the 4/1

- Following the pulse, q=3 flow rotation frequency decays to 5 kRad/s
 - Slowing down consistent with decreased 3/1 phase frequency
- After locking both 3/1 and 4/1 rotate at local rotation frequency at q=3
 - Torque not strong enough to pull the n=0 plasma rotation

Evolution of core flux surfaces indicates inside-out confinement loss

- Core flux surfaces are destroyed as 2/1 grows large
- Surface topology outside of 5/2 island largely unchanged
- Simulations and Poincare map are computed in toroidal geometry
 - Poincare map is mapped to straight field line coordinates

<u>Weak Pulse</u>: Reducing the MP amplitude qualitatively reproduces close fitting wall dynamics

- 2/1 grows slowly following applied MP
- (n+1)/n core modes are observed starting around 7-8 ms
 - Modes resonant in region of weak magnetic shear
- 2/1 transition to robust growth after 3/2 grows grows to large amplitude

<u>Weak pulse:</u> Good flux surfaces following MP with small 2/1, 3/1, and 4/1 island chains

<u>Weak pulse:</u> Evolution of core flux surfaces indicates insideout confinement loss

- Core flux surfaces are destroyed as 3/2 and then 2/1 grow large
- Surface topology outside of 2/1 island largely unchanged

Conclusions and Future Work

- NIMROD model improvements enable NTM modeling in experimentally relevant shaped diverted equilibria
- Applied MP excites robustly growing 2/1 NTM in both strong and weak pulse simulations
 - -Strong pulse: NTM robustly grows immediately following pulse
 - (n+1)/n core modes activity arises after 2/1 grows
 - -Weak pulse: NTM initially grows slowly following pulse
 - (n+1)/n core modes activity triggers 2/1 robust growth
- Both cases: Core mode activity results in inside-out confinement loss
- Future Work: Use model improvements to study locked mode disruptions
 - Core activity undesirable for these studies
 - Modeling simplifications designed to get things working exacerbate core mode stability issues (next slide)

E.C. Howell/CTTS 2022

Simplifications used to get simulations going enhance core mode growth

Parameters at q=2		Experiment
S	2.5x10 ⁶	7.9x10 ⁶
Pr _M	23	11
$(\chi_{\parallel}/\chi_{\perp})^{1/4}$	100	260
$\mu_e/(\nu_{ei}+\mu_e)$	0.55	0.45

- Normalized parameters are within a factor of 3 at 2/1 surface
- Reconstructed toroidal and poloidal flows are required for ELM stability
- Fix $|q_0| > 1$ to avoid 1/1

- Both conducting wall and resistive wall simulations are progressing
 - Resistive wall turned on after applied MP
- Both cases: Slowly growing 2/1
 - (n+1)/n core mode activity absent ... so far
 - Need to run longer due to increased τ_{VR}
- + Resistivity and μ_s calculated assuming Z_{\text{eff}}=3

Contact Information

- Feel free to email me if you want to schedule an in-person of virtual meeting to discuss these results
- Email: <u>ehowell@txcorp.com</u>

