NIMROD SPI Simulations of DIII-D Dual Injector Experiments

> Charlson C. Kim SLS2 Consulting charlson.c.kim@gmail.com

T. Bechtel, J. L. Herfindal, J. T. McClenaghan, B. C. Lyons, Y. Q. Liu, P. B. Parks, L. Lao - GA and the NIMROD Team

October 16, 2022

DIII-D 160606@02990ms¹, TE=0.7MJ, 1.28MA, $q_{min}=1.05$, $q_0=1.11$

- $96 \times 112 \text{ poly}_{degree} = 3 \text{ n} = [0, 21]$, Spitzer resistivity
- density diffusion: 3m²/s, viscosity: 250.0m²/s, χ_{\perp} =0.2m²/s, χ_{\parallel} =1.0×10⁹m²/s
- single injector : 200 pure neon fragment, r_p =2.0mm, v=120m/s $\frac{\Delta v}{v}$ =0.5, $\Delta \theta_{hw}$ = 20°
- \bullet nominal experimental inventory $\simeq 20 \times {\rm larger} \rightarrow {\rm reduced}$ inventory for higher assimilation
- deposition: r_d =3.0cm, $d\phi = 0.3 \times 2\pi$
- dual injector separated by 120°, identical fragment parameters
- ¹D. Shiraki, PoP 23, 062516 (2016)

C. C. Kim (SLS2)

NIMROD-dualSP

Single Injector Double Load Improves Quench Efficiency

• double load = $2 \times \text{single load}$: 400 r_p =2.0mm pure neon fragments

- faster thermal quench : $2.39ms \rightarrow 1.87ms$
- higher radiation fraction : $46\% \rightarrow 57\%$
- higher peak radiation : $3.6 \times 10^8 \text{W} \rightarrow 4.8 \times 10^8 \text{W}$

DIII-D Dual Injector Scan Shows Surprising Asymmetry!

- thermal quench time symmetric about dt=0.0ms "V" structure to results
 - bounded by single and double load single injectors
- radiated power and radiation fraction \rightarrow linear between dt=[-0.4,+0.4]ms
 - exceed double load single injectors
- simultaneous dt=0.0ms similar to single injector double load
- dt=+0.2ms numeric termination

Single Injector Double Load and Dual Injector(dt=0) Surprisingly Similar

- simultaneous dual injector thermal energy and radiation look similar to double load
- can be inferred that toroidal radiation peaking is reduced
- comparison of current spike behavior might be interesting but academic

Dual Injector: dt=-0.4ms and dt=+0.4ms - Clear Asymmetry

- dt=+0.4ms and dt=-0.4ms identical until t $\simeq 1.1ms$
- @t~1.1ms dt=-0.4ms plasma intercepts second fragment plume
 - \bullet radiation fraction increases from 46% to 58% to 67%
 - radiation peak increases from 3.6×10^8 W to 5.1×10^8 W to 7.3×10^8 W
 - thermal quench time about the same 2.18ms and 2.13ms, a little later than 1.97ms

Magnetic Helicity Cause of Asymmetry

- single injector visualization shows helical distortion of quenching plasma
- ablated impurities flow along field lines with some radial drift
- $\bullet\,$ cross sections at injector plane and $+180^\circ$ show motion/distortion of flux surfaces
- plasma motion/distortion may intercept or avoid lagging fragments

Improved Thermal Quench Correlates with Reduction in MHD

- plasma current, thermal energy, radiated energy, and magnetic energy for n=[0,1,2,3]
- increase in radiated energy correlates with decrease in magnetic mode energy of n = [1,2,3]
 - reduced mode activity reduces stochasticity
 - "optimal" interaction with dt=-0.4ms second plume
- not correlated with total ablation : dt=+0.4ms 18%, dt=0.ms 26%, dt=-0.4ms 21%

Dual Injector delay dt=0 and dt=-0.4ms cross section and 3D animation

C. C. Kim (SLS2)

NIMROD-dualSP

9/14

Comparison of Thermal Quench Time Shows expected "V" Structure

- similar "V" structure for thermal quench time vs injector delay
 - $\bullet\,$ experiment is a deeper "V" but more variability in fragment parameters
- narrow window for acceptable delay between injectors

Line Integrated Density

- $\sim \times 2$ -3 larger in DIII-D experiment
 - tracking down discrepancy
- relative location of diagnostic matters
 - impurities are localized
- experimental signal persists beyond quench?

Midplane Magnetic Probes - Fair Agreement Through Thermal Quench

- many similar features between experiment and synthetic midplane probe n=[1,2,3]
- experiment is ${\sim}2{\times}{\mathsf{larger}}$
- n=1 current spike is not as prominent in experiment

Last Closed Flux Surface - Absent Shrinkage

- \bullet NIMROD n=0 last closed flux surface compared to DIII-D/EFIT
- shrinkage in experiment during thermal quench not observed in simulations
- NIMROD x-point deflects during current spike²
- ²V. A. Izzo, PoP 28, 082502 (2021)

Summary and Conclusions

- surprising asymmetry observed in quench scan of delay in dual injector SPI simulations
 - best thermal quench is NOT simultaneous injectors
- helical motion/distortion of plasma may intercept or avoid second fragment plume
- "optimal" interaction of plasma and fragments at dt=-0.4ms reduces mode activity
 - reduced mode activity reduces stochasticity
 - $\bullet\,$ improves thermal quench efficiency $\rightarrow\,$ more radiated loss
 - not due to more ablation
- comparison to experiment shows
 - similar "V" structure in thermal quench time vs delay
 - similar mode activity
 - comparable densities
- understanding MHD important to optimizing SPI DMS
- absent flux shrinkage may indicate missing physics
- working on T-dep thermal conduction simulations
- ITER simulations in progress

	thermal quench time $ au_{TQ}(ms)$	peak radiation $ imes 10^8 ({\sf W})$	radiated/thermal energy
single load	2.39	3.58	0.46
double load	1.87	4.80	0.57
dt=+0.8ms	2.37	4.44	0.47
dt=+0.4ms	2.18	3.58	0.46
dt=+0.2ms	1.73	2.90	0.35
dt = 0.0 ms	1.97	5.05	0.58
dt=-0.2ms	1.96	5.93	0.61
dt=-0.4ms	2.13	7.33	0.67
dt=-0.8ms	2.39	3.55	0.48

Dual Injector: $dt=\pm 0.2ms$ - Incomplete Comparison

• radiation shows early difference between dt=0.0ms and [dt=-0.2ms,dt=+0.2ms]

- dt=+0.2ms and dt=-0.2ms begin similarly
- difference in dt=+0.2ms and dt=-0.2ms begins at $t\simeq 1.2ms$
- dt=+0.2ms early numeric termination incomplete comparison

Dual Injector: $dt=\pm 0.8ms$ Reverts to Single Injector Single Load

- $dt\pm0.8ms$ show similar behavior to single injector
- delay too large for second plume to make much impact
 - $\bullet\,$ some late interaction observed, e.g. larger peak for dt=+0.8ms

Diagnostic Layout

Comparison to Experiment: 184414 (single) and 184421 (dual)

5/6

Line Integrated Density - Missing Density? (baseline $\simeq 2 imes 10^{20} extsf{m} \cdot extsf{m}^3$)

- DIII-D more than $10 \times larger$ than NIMROD
- implies DIII-D plasma density increasing by several factors (×2-5)!!
 - continues to increase after thermal quench
 - additional source in DIII-D carbon from the inner wall?
 - impact on thermal and current quench?