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• Disruptions pose a risk of damage to future tokamaks, 
necessitating robust mitigation techniques

• Most promising method uses pellet injection of impurities to 
radiate stored energy

• Simulations, validated against mitigation experiments, are 
required to project techniques to future devices

• Integrated model is required to capture all relevant physics
– Magnetohydrodynamics (MHD) for macroscopic evolution of 

disruption dynamics
– Atomic physics for ionization and radiation from injected 

impurities
– Drift-kinetics for phase-space evolution of runaway electron 

population

Modeling of Disruption Dynamics and Mitigation 
Requires a Multiphysics Model
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M3D-C1 Code Overview
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• Three-dimensional toroidal geometry
• Full (not reduced) MHD
• Solves for potential and stream-function 

fields for 𝑨 & 𝒗 (𝛁 $ 𝑩 = 𝟎 intrinsically)
• Includes resistivity, density diffusivity, 

viscosity, & thermal conductivity
• Two-fluid effects (optional)
• 3D high-order finite elements

• Unstructured, triangular mesh in poloidal 
plane

• Structured toroidally, but can pack planes
• Can solve with finite-thickness resistive 

wall in domain**

M3D-C1* Solves the Extended-MHD Equations

*S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012).
**N.M. Ferraro, et al. ,Phys Plasma23  056114 (2016).

Vacuum  (J=0)

Plasma 
(X-MHD)

RW ( E = hW J )
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M3D-C1 Solves the Extended-MHD Equations
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• KPRAD solves for impurity-plasma interaction in low-density, 
coronal model
– N.B. not coronal equilibrium
– Based on ADPAK rate coefficients
– Impurity charge states and electron density evolve according to 

ionization and recombination

– Thermal energy lost from plasma due to 
• Ionization
• Line radiation
• Bremsstrahlung radiation
• Recombination radiation

• Subcycled much faster than typical MHD time steps 

KPRAD* Provides Needed Atomic Physics Information

*D.G. Whyte, et al., Proc. of the 24th Euro. Conf. on Controlled Fusion and 
Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 21A, p. 1137. 

@nz

@t
+r · (nzv) = r · (Drnz) + Iz�1nz�1 � (Iz +Rz)nz +Rz+1nz+1 + Sz
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• Two temperature equations (electron & all-ions)
– Dilution cooling of ions and electrons
– Electrons lose energy to ionization and radiation
– Main ions cool on electrons

• Single temperature equation
– Evolves sum over all species
– Te/Ti constant throughout time, implicitly assuming

• Instantaneous thermal equilibration
• Split of losses between species evolves as pressure ratio changes

KPRAD Couples* to the M3D-C1 Temperature Equation(s)

ne


@Te

@t
+ v ·rTe + (�� 1)Ter · v

�
+ �eTe = (�� 1)

⇥
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@Ti

@t
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�
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2
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2

�

*N.M. Ferraro et al. Nucl. Fusion 59 016001 (2019).
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Verification Benchmarks of 
NIMROD & M3D-C1
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• Four cases solved by both M3D-C1 
and NIMROD*
– Lyons et al., PPCF 61, 064001 (2019)
– Shown here: argon with Spitzer 

resistivity
• Simulation setup

– DIII-D shot 137611 @ 1950 ms
– 2D, nonlinear, single-fluid
– Fixed boundary

• Continuous neutral impurity 
deposition
– No impurities to start
– Gaussian source

– Injection rate ~1 mm Ne/Ar per ms

Axisymmetric Benchmark Successful for Fast Impurity 
Injection in DIII-D Core

1.0 1.7 2.4
5 (m)

−1.5

−1.0

−0.5

−0.0

0.5

1.0

1.5

Z 
(m

)

nz, VRurce 

0.0 0.2 0.4 0.6 0.8 1.0

Ψ
0

1

2

3

4

7e (keV)
aJφ/5@ (0A/m3)

0

0.2

0.4

0.6

0.8

1

arb.

*C. R. Sovinec et al., J. Comput. Phys. 195, 355
(2004). 

C. Sovinec & J. King, J. Comput. Phys. 229,
5803 (2010). 
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• Quantitative agreement 
during thermal quench (TQ)

• Qualitative agreement during 
current quench (CQ)

• Low temperature in core 
causes resistivity to rise
– Pohm balances Ploss

– Current drops more rapidly
• Current quench caused by 

contact with boundary
• Peak loss power when 

temperature on-axis falls 
near-zero

Excellent Agreement Found Between Codes in 2D

Argon injection
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• 3D nonlinear MHD
– Fixed boundary
– Single-temperature 

equation
• Pellet/deposition 

parameters
– 3 mm radius, pure neon 
– 5 cm poloidal and 2.4 m 

toroidal half-width
– 200 m/s with realistic 

trajectory
– Ablation by local electron 

density and temperature 
according to model by 
Parks

• Work has motivated code 
development and provided 
insight into SPI physics

3D, Nonlinear Benchmark Between M3D-C1 & NIMROD 
for Realistic, Injected Pellet is Well-Underway

M3D-C1 Modeling of DIII-D 160606 @ 2990 ms: 
0.7 MJ, 1.28 MA

Impurity
Density

Electron
Temperature

Toroidal
Current Density
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• Early, radiation driven thermal 
quench in good agreement

• NIMROD shows earlier spike in 
radiation, driven by earlier MHD 
instability onset

• M3D-C1 observes stabilization 
from density diffusivity

M3D-C1 & NIMROD Differ in Timing of Instability Onset
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SPI Plume Modeling in JET
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• Script created to generate 
shatter plumes
– Uniform fragments
– Fracture-threshold theory

T.E. Gebhart et al. IEEE 48, 6 
(2019)

• Distribution options
– Sunflower distribution
– 2D uniform
– Gaussian poloidal/toroidal 

spread
• Easily generate random (but 

reproduceable) plumes for 
different pellet size, speed, and 
composition

• Being used for reference plumes 
in JET & KSTAR modeling by 
M3D-C1, NIMROD, and JOREK

M3D-C1 Multi-Fragment Modeling Uses Realistic 
Model for Shattered Plumes

Same parameters, different random plumes

Spread in tokamak geometry

https://doi.org/10.1109/TPS.2019.2957968
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• Based on high-thermal-energy 
(Scenario 1) plasma with 8.1 mm 
cylindrical pellet

• Equilibria reconstructed with kinetic 
profiles acquired for recent 
experiment

• Two realistic pellets travel along 
nominal trajectory
– Pure Neon 

• 30 1.71-mm shards
• 150 m/s

– 95% D:
• 85 1.21-mm shards
• 300 m/s

– Uniform shard size computed from 
ablation-average of cloud

• Also consider same plumes but 
swapped speeds

M3D-C1 JET Modeling with Realistic Plumes Performed 
for JET Scenario 1
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• All plumes show similar peak 
radiated power

• Dynamics versus time
– Fast neon has earliest TQ
– Others have similar TQ times

• Dynamics versus penetration depth
– Slow: both travel same to same 

depth – radiation dominates
– Fast: mixed pellet travels deeper –

doesn’t radiate fast enough to 
induce instability

– Deeper penetration leads to 
increased mode coupling

JET Modeling Shows Competition Between Rate of 
Travel and Rate of Radiative Dissipation

shard position, 
weighted by ablation rate

q =
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SPI Plume Modeling in KSTAR
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• Realistic plumes created for 7-mm, 
10%-Ne pellet with 12.5˚ shatter 
angle

• Two, symmetrically injected pellets 
– Better than two pellets at one angle

• Slower TQ 👍
• Lower peak radiation 👍
• Lower TPF 👍

– But not necessarily better than one 
pellet
• Faster TQ 👎
• Similar peak radiation, but longer 

duration
• Lower TPF 👍

• Future work
– 20% Ne vs. 2x 10% Ne
– Time delays on dual injection
– Validation with 2022 KSTAR data

Initial M3D-C1 KSTAR Modeling Shows Uncertain 
Benefits of Multiple Injection
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Coupling to ADAS Impurity Model



20 Lyons APS-DPP 10-22

• Atomic Data and Analysis 
Structure (ADAS) provides
– A database of high-quality 

impurity data 
– Collisional-radiative data 

with density dependence 
• Even at low density (coronal 

limit), ADAS can be very 
different from KPRAD

ADAS Impurity Data is Being Coupled to M3D-C1
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Changes in Radiation & Charge States Significantly 
Affect Benchmark Thermal Quench Dynamics

KPRAD KPRAD KPRADADAS ADAS ADAS
Line Radiation Ne 7+ Ne 8+
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• M3D-C1/NIMROD benchmark gives confidence in 3D 
nonlinear MHD modeling of SPI

• JET simulations show competition between SPI rate of travel 
and rate of radiative dissipation for inducing MHD

• Initial KSTAR modeling shows that symmetric injection of 
material improves thermal quench metrics, but injecting less 
material overall could be better

• Future Work
– Complete benchmark
– Simulate additional KSTAR scenarios and validate with data
– Couple to density-dependent, collisional-radiative ADAS data

Conclusions & Future Work
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• M3D-C1 & NIMROD 3D benchmark
– Continue convergence studies 

• Poloidal & toroidal resolution
• Time step
• Diffusivities

– Need to determine metrics for success
• Strong nonlinearity makes exact agreement difficult
• Chaotic evolution: small discrepancies early cause exponential 

deviation
• Perhaps use physically relevant quantities, 

e.g., assimilation fraction, radiation fraction/peaking, TQ time

• Validate JET modeling against experimental results
• Validate KSTAR modeling of multiple toroidal injection
• Predictive modeling for ITER SPI

Future M3D-C1 Disruption Mitigation Work
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Additional Slides
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• M3D-C1 benchmark case re-run with two-temperature model
• Early dynamics similar, but deviates as electrons cool faster than single-

temperature model
– Less ablation and ionization
– Slower thermal quench
– Delayed instability

• Single-temperature model may underpredict thermal-quench times and 
overpredict pellet assimilation

Two-Temperature Modeling Shows Delayed Thermal 
Quench


