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Introduction

The NIMROD fluid runaway model can now compute the
linearized MHD+RE equations.

NIMROD Simulations of linear (m,n) = (2, 1) tearing modes and (1, 1)
resistive kink modes give similar results to previous work

The linearized equations can use different models for the runaway velocity.
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Introduction

Different treatments of linear theory show qualitative differences

Helander finds that the linear growth rate of the tearing mode including runaways
becomes the standard FKR expression for the case with only runaway current1.
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Liu et al. find that the runaways introduce a real frequency to the eigenmode2.
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Avinash and Kaw find for a slab tearing mode (for small kinetic energy of runaways)3
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1P. Helander et al., Physics of Plasmas 14, 10.1063/1.2817016 (2007).
2C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).
3Avinash and P. Kaw, Nuclear Fusion 28, 10.1088/0029-5515/28/1/009 (1988).
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Introduction

Results from Liu, et al. compare the analytic growth rate scaling
with linear M3D-C1 calculations for the (2,1) tearing mode.4

4C. Liu et al., Physics of Plasmas 27, 10.1063/5.0018559 (2020).
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Introduction

Liu et al. also analyze the effect of runaways on the linear
growth rate of the (1,1) resistive kink.
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Model

The reduced model evolves a beam-like runaway population
density with volumetric sources.

Continuity equation for runaway electron population:

∂nr

∂t
+∇ · (nrur) = SD(E∥) + SA(E∥) +Dr∇2nr, (4)

where nr is the number density of runaways, SD, SA are sources, Dr is a
numerical diffusion coefficient and
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Model

The runaway electrons couple to the MHD evolution via a
modified Ohm’s law.

E = −V ×B + η (J + enrur) (5)

This Ohm’s law is valid for

nr

ne
≪ 1, menr

dur

dt
≈ 0

This model is similar the model employed in Bandaru5 and Matsuyama6, and the
model in M3D-C17.

5V. Bandaru et al., Physical Review E 99, 1–11 (2019)
6A. Matsuyama et al., Nuclear Fusion 57, 10.1088/1741-4326/aa6867 (2017)
7C. Zhao et al., Nuclear Fusion 60, 10.1088/1741-4326/ab96f4 (2020)
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Model

Quasi-neutrality may appear in different ways.

If we take me ≈ 0 and
∑

s msnsus ≈ miniui, then the right-hand side of the resulting
total momentum equation contains the following terms:

e(Zni − ne − nr)E + e(Zniui − neue − nrur)×B

If 0 = Zni − ne − nr, and J = e(Zniui − neue − nrur), then we get the typical
momentum equation:

mini
dV

dt
= J ×B −∇p

And taking 0 = E + ue ×B +Rei = E + ur ×B and substituting the definition of J
yields the Ohm’s law:(

1 +
nr

ne

)
(E + V ×B) =

J

ene
×B + η (J − Jr) (6)
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Model

Quasi-neutrality may appear in different ways.

One could also consider summing only the ion and bulk electron equations:

V ≡ miniui +meneue

mini +mene
≈ ui

mini
dV

dt
= enrE + (J − Jr)×B −∇p

If 0 = E + ur ×B as before, these terms will cancel, but one could choose to work with
this description and allow for terms of order me in the runaway momentum equation:
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r + ... (7)
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Numerical Methods

The linearized runaway velocity can include the perturbed drift.

The full perturbed RE velocity is given by
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α ≡ ηeNr

B
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In the present form, we consider only the perturbed parallel

ur = −cr
b⊥
B

(12)

We also do not consider a linearized source term =⇒ only the least-squares projection is
used for the runaway continuity equation.
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Linear NIMROD calculations

Results from cylindrical geometry tearing mode case reproduce
Liu et. al analysis.

β = 0 screw pinch
equilibrium in a cylinder

q = 1.15
(
1 + (r/a)2

0.6561

)
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Linear NIMROD calculations

NIMROD also observes the modified scaling of the resistive kink
in the presence of runaway current.

Kink equilibrium: β = 0, R/a = 10. q = 0.9(1 + 1/2(r/a)2)
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Linear NIMROD calculations

Summary and Future work

The fluid runaway electron model in NIMROD reproduces results of
implementations in other MHD codes in and analytics in linear calculations.

There remain open questions about the importance of the drift velocity and
runaway inertia in linear cases.

Future work remains to complete the implementation of the perturbed drift
velocity for linear calculations.
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