
 Parallel Anisotropic Mesh Adaptation and
Adding Support for Particle Methods

   M.S. Shephard, O. Sahni, E.S. Yoon, E.S. Seol,
C.W. Smith, K. Kamran

   Scientific Computation Research Center
   Rensselaer Polytechnic Institute

   RPI team supporting unstructured meshing for 4 fusion SciDACs:
n Tokamak Transients Simulations
n High-Fidelity Boundary Plasma Simulation
n Plasma Surface Interactions
n Integrated Simulation of Fusion Relevant RF Actuators

Parallel Unstructured Mesh Infrastructure (PUMI)

   PUMI Services:
n Mesh and fields on mesh

distributed across processes
l Communication links established

and maintained
l Ownership used to control operations

on shared entities

n Entities can be migrated
between parts

n Direct linkage to geometric
model maintained

n Remote copies supported
(e.g. “ghost” copies)

n Field operation including
local transfer during adaptation

2 remote copy layers

2

PUMI Software Pointers

Resources for PUMI:
n  Web: http://www.scorec.rpi.edu/pumi/
n  S/W build instruction:

https://github.com/SCOREC/core/wiki/General-Build-instructions
n  User's Guide: http://scorec.rpi.edu/pumi/PUMI.pdf
n  Design, Concepts and Applications: see a paper published in

TOMS at https://www.scorec.rpi.edu/REPORTS/2014-9.pdf
n  Regression test results:

http://my.cdash.org/index.php?project=SCOREC
Recent PUMI advances (its running on the latest Phi’s at Argonne and
NERSC there is also a GPU version):
n  Recent thesis on: Array-based implementation and

implementation on GPUs:
https://www.scorec.rpi.edu/reports/view_report.php?id=710

n  See papers with Ibanez or Smith as authors from 2015 and 2016
at: https://www.scorec.rpi.edu/reports/

3

Dynamic Load Balancing

n Purpose: to rebalance load imbalanced mesh during mesh
modification
l Equal “work load” with minimum inter-process communications

n Predictive load balancing to control memory
n Two tools being used

l  Zoltan Dynamic Services supporting multiple dynamic partitioners
with general control of partition objects and weights.

l  ParMA for partition improvement to account for multiple criteria.

4

For little cost, ParMA
improves scalability by
decreasing vertex
imbalance while
maintaining element
balance.

Mesh Adaptation by Local Mesh Modification

   Controlled application of mesh modification operations including
dealing with curved geometries, anisotropic meshes

   Base operators
n  Swap
n  Collapse
n  Split
n  Move/shape

   Compound operators chain single step operators
n  Double split collapse operator
n  Swap(s) followed by collapse operator
n  Split, then move the created vertex
n  Etc.

Edge collapseEdge split Face split

Double split collapse to remove the red sliver

55

Curved Mesh Adaptation

   Anisotropic curved mesh adaptation
n Employs links from mesh to geometry
n Employs Bezier mesh geometry for the mesh faces –

can be finer triangulation, etc.

6

Supporting Evolving Geometry Problems

Combined procedure to account for evolving geometry
n Mesh motion (based on elastic or spring analogy
n General mesh modification

Mesh Motion
n  Can account for reasonable geometry changes, but will fail

eventually
n  Efficiently applied since

matrix structures unaltered
Mesh modification
n  Can account for large

geometric changes
Approach
n  Apply mesh motion until

mesh not satisfactory
n  Apply mesh modification to

determined mesh size field

Parallel	Data	&	Services	

	Domain	Topology	

Mesh	Topology/Shape	

Dynamic	Load	Balancing	

Simula=on	Fields	

Physics	and	Model	Parameters	 Input	Domain	Defini=on	with	ACributes	

Mesh-Based	
Analysis	

Complete	
Domain	
Defini=on	

Mesh	Genera=on	
and/or	Adapta=on	

Postprocessing/
Visualiza=on	

Solu=on	
Transfer	

Correc=on	
Indicator	

PDE’s	and	
discre=za=on	
methods	

Solu=on		transfer	constraints	

mesh	with	fields	

mesh	with	
fields	

	calculated	fields	

mesh	size		
										field	

meshes	
and	fields	

meshing		
opera=on	 geometric	

										interroga=on	

ACributed		
				topology		

non-manifold	
model	construc=on	

geometry	updates	

mesh	size		
field	

mesh		

	Par==on	Control	

Parallel Adaptive Simulation Components

8

Building In-Memory Parallel Workflows

  A scalable workflow requires effective component coupling
n  Avoid file-based information passing

l On massively parallel systems I/O dominates power
consumption

l Parallel filesystem technologies lag behind in performance
and scalability of processors and interconnects

l Unlike compute nodes, the filesystem resources are almost
always shared and performance can vary significantly with
its load level

n  Use APIs and data-streams to keep inter-component
information transfers and control in on-process memory

l When possible, don’t change horses
l Component implementation drives the selection of an in-

memory coupling approach
l Link component libraries

9

   Automation and adaptive methods critical
to reliable simulations for both scientific
and industrial applications

   In-memory integrations developed
n PHASTA – FE code for NS
n FUN3D – FV CFD code
n Proteus – multiphase FE code
n ACE3P – High order FE

 electromagnetics
n M3D-C1 – FE based MHD code
n Nektar++ – High order FE

 flow code
n Albany/Trilinos – Solid mechanics

 FE code

Parallel Adaptive Simulation Workflows

Application of
active flow
control to

aircraft tails

Blood flow on the
arterial system

Fields in a particle accelerator

Mesh/Particle Interactions in PIC

Red and Blue designate
quantities associated with
particles and mesh, resp.

Particle <Push> (update x, v)

Particle

<Gather> field
for particle push

(mesh → particle)

Particle
Nodes
Interpolation

<Solve> field at mesh
for force calculation

<Scatter> particle
properties for field solver

(particle → mesh)

Particle
Nodes
Interpolation

11

Current vs. New Approach

Current approach
■  Employ a copy of entire mesh and its fields on each process
■  Key data structure is particles pointing to mesh elements
■  Search based on a secondary structure during push

operation to determine element containment of particle
■  Scalable wrt number particles
■  Not scalable wrt number of mesh elements

New Approach: A scalable particle-in-cell (PIC)
methods on distributed unstructured mesh
infrastructure
■  Requires a distributed mesh
■  Need mesh based structures
■  Cannot let communication become dominant

12 12

Extensions to PUMI to support PIC

n Appropriate mesh-to-particle data structures and access
l PUMI tags not ideal for large numbers of entities
l Need effective structure for access and modification

(addition/deletion)
n Mesh distribution need to be optimal for PIC calculations

l Substantial overlap to have all elements available that will
be involved in a push on process

l Consideration of preferred motion of particles if that exists
n Optimize adjacencies for PIC operations

l PUMI’s one-level complete representation – not
necessarily optimal for specific application needs

l Search based on mesh adjacency
l Want a version optimized for PIC operations since they

will dominate
13

Mesh Distribution for PIC Calculations

   Typical mesh-based field codes
n Use a graph or geometric partitioning

to minimize surface area to volume
n Use no or one layer of remote copies

   For PIC calculations
n Number of layers of read only copies must be

greater that the maximum number of elements
that can be traversed in a push

n Means there are multiple copies of elements
l Is scalable in that the mesh is distributed
l Particles will still dominate total memory use

n Many applications do have preferred motion directions
l Alternative mesh distributions can minimize particle motion

between parts

Partition optimal  
for mesh-based  

field solve

14

Parallel Mesh Distribution Designed for XGC

Mesh

   XGC field following meshes
n Magnetic flux surfaces used in mesh

generation to create field following
mesh

   Mesh distributed to each process
n The mesh between two flux curves,

the core, plus a set of layers
l Number of compute nodes much

greater than number of flux
surfaces – Particles between flux
surfaces go to a set of processes

n Each process will push a subset of
the particles in the core mesh for a
mesh part

Model

Example
showing two
parts: Blue is the
mesh between
two flux surfaces
and the yellow
spans three
layers on each
side of the core

15

Mesh Distribution and Partitioning for FE Field Solve

   Field solve should also use a distributed mesh
n Mesh distribution for PIC different than optimal for field solve
n Using “optimal distributions”

for each requires too
much data motion

n Take advantage of the
large overlaps in PIC
mesh distribution –
“locally” partition
mesh using graph
based partitioning

n Needed mesh and
particle information
is thus on part

16

Mesh Distribution and Partitioning for FE Field Solve

   Method being developed for XGC takes advantage of large
overlap for PIC and will use “local” graph parititoning

   Group: a set of multiple MPI ranks which share local domain
   1st level inter-group partitioning
n Partition radially with regard to flux surfaces where particles

are initialized.
n Add enough buffer layers so that most particle drift can be

covered.
n Actual particle and mesh decomposition

   2nd level intra-group partition
n Partitioning for field SOLVE
n Assign part of local domains to MPI ranks in a group by

METIS for PETSc solver
n Flexible to use arbitrary number of Groups for SOLVE

17

Particle Search

Require knowledge of element that particle is in after
push
■ Particle motion is small per time step
■ Using mesh based particle structures and mesh adjacencies

on distributed mesh (needed information is local due to large
overlaps)

■ Many particles do not move to
new element in a push –
optimized parametric inversion
for a 2.5 time improvement

■ Alternatives evaluated for use
of adjacencies to traverse to
new elements

18

Adjacency Search Traversals

19

Implementation of Parallel Mesh PIC into XGC code

   Steps include:
n Replace Particle-to-Mesh (copy of mesh everywhere)

structures with distributed Mesh-to-Particle
n Introduce field following distributed mesh including needed

communication operations
n Replace grid based search with mesh adjacency search
n Initialization of particles in new data structures
n Particle charge to mesh (charge scatter)
n Mapping mesh field to particles (field gather)
n Partition mesh for field solve maintaining consistency with

the particle push mesh distribution
n Implement parallel field solve on distributed mesh

20

Particle Initialization with distributed mesh

   Monte-Carlo accept/reject method is used for uniform
distribution of marker particles over each axisymmetric
triangular ring
n Random samples are scattered over a curved cubic

enclosing the triangular ring element in 3D (accept/reject =
50%/50%)

n Uniform sampling by a cumulative distribution function (100%
accept) requires to solve a cubic equation with conditional,
which is computationally
more expensive
than trying one more random
sample

21

Scatter with Distributed Mesh	

   Safety zone is introduced for gyro-averaging and
particle migration policy.
n XGC performs gyro-averaging over

gyro-ring centered at each mesh vertex.
n Given maximum gyro-ring size decides

 “safety zone” (red region in the right
figure) of elements where gyro-
averaging operation can be safely
taken in the distributed domain.

n This endows a particle migration
policy such that particles moved out
of safety zone should be migrated
to one of MPI ranks which shares
the element in safety zone.

	

Safety zone of a
local mesh for a
sample group	

22

Scatter (& Gather) with Mesh Distribution

   Workflow with distributed mesh
n [Prerequisite] All local marker particles in each rank located

in safety zone of the local mesh
n Charge scatter from marker-particles to vertices in left/right

(real) poloidal planes
n Gyro-averaging scatter by multiplying the scattered charges

on each vertex with pre-calculated gyro-averaging factors
n Reduction among MPI ranks sharing elements through PUMI

   Gather is a reverse process of scatter. (From mesh to particle)
n Vertices on different flux

surfaces can have
different number of
MPI ranks sharing the
same vertices

n Handled by PUMI APIs
23

Field Solve Using PETSc

   New field SOLVE consistent with workflow of XGC1
   MSI: Mesh-Solver Interface
n PUMI support for PETSc/Trilinos
n Scatter and Back scatter for force vector & global matrix

assembly are automatically handled by user-defined
ownership from SOLVE partition

n Debugging with a set of default solvers – will consult with
PETSc experts for most appropriate set

   2 level partition for SOLVE allows flexibility for
n Number of Groups to solve (by exploiting buffer region)

l Tested with a unit test code, not implemented yet
n Number of MPI ranks in each group to solve

   Initial test cases run
24

Status of Implementation and Next Steps
   Status
n Have defined a full set of methods for execution of XGC with

a distributed mesh
n An initial pass through the entire process is now implemented

l Some specific short cuts on gather operation taken – do
not affect overall process and will be eliminated shortly

n Have some limited unit tests done
n Just getting first full loop (with a specific option set) results

   Immediate next steps
n Towards supporting full optional capabilities of XGC1
n Performance tuning and comparison

   Longer term next steps
n Get trusted version to do physics calculations
n Optimization for new systems

   We are still looking for at least one more postdoc 25

