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Parallel Unstructured Mesh Infrastructure (PUMI) 

   PUMI Services: 
n Mesh and fields on mesh  

distributed across processes 
l Communication links established  

and maintained 
l Ownership used to control operations  

on shared entities 

n Entities can be migrated  
between parts 

n Direct linkage to geometric 
model maintained 

n Remote copies supported 
(e.g. “ghost” copies) 

n Field operation including 
local transfer during adaptation 

 
2 remote copy layers 
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PUMI Software Pointers 

Resources for PUMI: 
n  Web: http://www.scorec.rpi.edu/pumi/  
n  S/W build instruction: 

https://github.com/SCOREC/core/wiki/General-Build-instructions 
n  User's Guide: http://scorec.rpi.edu/pumi/PUMI.pdf 
n  Design, Concepts and Applications: see a paper published in 

TOMS at https://www.scorec.rpi.edu/REPORTS/2014-9.pdf 
n  Regression test results:  

http://my.cdash.org/index.php?project=SCOREC  
Recent PUMI advances (its running on the latest Phi’s at Argonne and 
NERSC there is also a GPU version): 
n  Recent thesis on: Array-based implementation and 

implementation on GPUs:  
https://www.scorec.rpi.edu/reports/view_report.php?id=710 

n  See papers with Ibanez or Smith as authors from 2015 and 2016 
at: https://www.scorec.rpi.edu/reports/ 
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Dynamic Load Balancing 

n Purpose: to rebalance load imbalanced mesh during mesh 
modification 
l Equal “work load” with minimum inter-process communications 

n Predictive load balancing to control memory  
n Two tools being used 

l  Zoltan Dynamic Services supporting multiple dynamic partitioners 
with general control of partition objects and weights. 

l  ParMA for partition improvement to account for multiple criteria. 
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For little cost, ParMA 
improves scalability by 
decreasing vertex 
imbalance while 
maintaining element 
balance.



Mesh Adaptation by Local Mesh Modification 

   Controlled application of mesh modification operations including 
dealing with curved geometries, anisotropic meshes  

   Base operators 
n  Swap 
n  Collapse 
n  Split 
n  Move/shape 

   Compound operators chain single step operators 
n  Double split collapse operator 
n  Swap(s) followed by collapse operator 
n  Split, then move the created vertex 
n  Etc. 

Edge collapseEdge split Face split

Double split collapse to remove the red sliver
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Curved Mesh Adaptation 

   Anisotropic curved mesh adaptation 
n Employs links from mesh to geometry 
n Employs Bezier mesh geometry for the mesh faces –  

can be finer triangulation, etc.   
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Supporting Evolving Geometry Problems 

Combined procedure to account for evolving geometry  
n Mesh motion (based on elastic or spring analogy 
n General mesh modification 

Mesh Motion 
n  Can account for reasonable geometry changes, but will fail 

eventually 
n  Efficiently applied since  

matrix structures unaltered 
Mesh modification 
n  Can account for large  

geometric changes 
Approach 
n  Apply mesh motion until 

mesh not satisfactory 
n  Apply mesh modification to 

determined mesh size field 
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Building In-Memory Parallel Workflows

  A scalable workflow requires effective component coupling
n  Avoid file-based information passing

l On massively parallel systems I/O dominates power 
consumption

l Parallel filesystem technologies lag behind in performance 
and scalability of processors and interconnects

l Unlike compute nodes, the filesystem resources are almost 
always shared and performance can vary significantly with 
its load level

n  Use APIs and data-streams to keep inter-component 
information transfers and control in on-process memory

l When possible, don’t change horses
l Component implementation drives the selection of an in-

memory coupling approach
l Link component libraries
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   Automation and adaptive methods critical  
to reliable simulations for both scientific  
and industrial applications 

   In-memory integrations developed 
n PHASTA – FE code for NS 
n FUN3D – FV CFD code 
n Proteus – multiphase FE code 
n ACE3P – High order FE  

                electromagnetics 
n M3D-C1 – FE based MHD code 
n Nektar++ – High order FE  

                   flow code 
n Albany/Trilinos – Solid mechanics 

                            FE code 

Parallel Adaptive Simulation Workflows 

Application of 
active flow 
control to 

aircraft tails 

Blood flow on the 
arterial system

Fields in a particle accelerator



Mesh/Particle Interactions in PIC 

Red and Blue designate  
quantities associated with  
particles and mesh, resp. 

Particle <Push> (update x, v) 
 
 
 

  
  

Particle 

<Gather> field  
for particle push 

(mesh → particle) 
 
 
 
 

  

Particle 
Nodes 
Interpolation 

<Solve> field at mesh 
for force calculation 

   
  

<Scatter> particle 
properties for field solver 

(particle → mesh) 
 
 
 
 

Particle 
Nodes 
Interpolation 
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Current vs. New Approach 

Current approach   
■  Employ a copy of entire mesh and its fields on each process 
■  Key data structure is particles pointing to mesh elements 
■  Search based on a secondary structure during push 

operation to determine element containment of particle 
■  Scalable wrt number particles 
■  Not scalable wrt number of mesh elements  

 

New Approach: A scalable particle-in-cell (PIC) 
methods on distributed unstructured mesh 
infrastructure  
■  Requires a distributed mesh 
■  Need mesh based structures 
■  Cannot let communication become dominant 
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Extensions to PUMI to support PIC 

n Appropriate mesh-to-particle data structures and access 
l PUMI tags not ideal for large numbers of entities 
l Need effective structure for access and modification 

(addition/deletion) 
n Mesh distribution need to be optimal for PIC calculations 

l Substantial overlap to have all elements available that will 
be involved in a push on process  

l Consideration of preferred motion of particles if that exists 
n Optimize adjacencies for PIC operations 

l PUMI’s one-level complete representation – not 
necessarily optimal for specific application needs 

l Search based on mesh adjacency  
l Want a version optimized for PIC operations since they 

will dominate 
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Mesh Distribution for PIC Calculations 

   Typical mesh-based field codes 
n Use a graph or geometric partitioning  

to minimize surface area to volume 
n Use no or one layer of remote copies 

   For PIC calculations 
n Number of layers of read only copies must be  

greater that the maximum number of elements  
that can be traversed in a push 

n Means there are multiple copies of elements 
l Is scalable in that the mesh is distributed 
l Particles will still dominate total memory use 

n Many applications do have preferred motion directions  
l Alternative mesh distributions can minimize particle motion 

between parts  

Partition optimal  
for mesh-based  

field solve 
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Parallel Mesh Distribution Designed for XGC 

Mesh

   XGC field following meshes  
n Magnetic flux surfaces used in mesh 

generation to create field following 
mesh 

   Mesh distributed to each process 
n The mesh between two flux curves, 

the core, plus a set of layers  
l Number of compute nodes much 

greater than number of flux 
surfaces – Particles between flux 
surfaces go to a set of processes 

n Each process will push a subset of 
the particles in the core mesh for a 
mesh part 

Model

Example 
showing two 
parts: Blue is the 
mesh between 
two flux surfaces 
and the yellow 
spans three 
layers on each 
side of the core
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Mesh Distribution and Partitioning for FE Field Solve 

   Field solve should also use a distributed mesh 
n Mesh distribution for PIC different than optimal for field solve 
n Using “optimal distributions”  

for each requires too  
much data motion 

n Take advantage of the  
large overlaps in PIC  
mesh distribution –  
“locally” partition  
mesh using graph  
based partitioning 

n Needed mesh and  
particle information  
is thus on part 
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Mesh Distribution and Partitioning for FE Field Solve 

   Method being developed for XGC takes advantage of large 
overlap for PIC and will use “local” graph parititoning 

   Group: a set of multiple MPI ranks which share local domain 
   1st level inter-group partitioning 
n Partition radially with regard to flux surfaces where particles 

are initialized. 
n Add enough buffer layers so that most particle drift can be 

covered.  
n Actual particle and mesh decomposition 

   2nd level intra-group partition 
n Partitioning for field SOLVE 
n Assign part of local domains to MPI ranks in a group by 

METIS for PETSc solver 
n Flexible to use arbitrary number of Groups for SOLVE 

17



Particle Search 

Require knowledge of element that particle is in after 
push 
■ Particle motion is small per time step 
■ Using mesh based particle structures and mesh adjacencies 

on distributed mesh (needed information is local due to large 
overlaps) 

■ Many particles do not move to  
new element in a push –  
optimized parametric inversion  
for a 2.5 time improvement 

■ Alternatives evaluated for use  
of adjacencies to traverse to  
new elements  
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Adjacency Search Traversals 
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Implementation of Parallel Mesh PIC into XGC code 

   Steps include: 
n Replace Particle-to-Mesh (copy of mesh everywhere) 

structures with  distributed Mesh-to-Particle 
n Introduce field following distributed mesh including needed 

communication operations 
n Replace grid based search with mesh adjacency search 
n Initialization of particles in new data structures 
n Particle charge to mesh (charge scatter) 
n Mapping mesh field to particles (field gather) 
n Partition mesh for field solve maintaining consistency with 

the particle push mesh distribution 
n Implement parallel field solve on distributed mesh 

20 



Particle Initialization with distributed mesh 

   Monte-Carlo accept/reject method is used for uniform 
distribution of marker particles over each axisymmetric 
triangular ring 
n Random samples are scattered over a curved cubic 

enclosing the triangular ring element in 3D (accept/reject = 
50%/50%) 

n Uniform sampling by a cumulative distribution function (100% 
accept) requires to solve a cubic equation with conditional, 
which is computationally  
more expensive 
than trying one more random  
sample 
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Scatter with Distributed Mesh	

   Safety zone is introduced for gyro-averaging and 
particle migration policy. 
n XGC performs gyro-averaging over  

gyro-ring centered at each mesh vertex. 
n Given maximum gyro-ring size decides 

 “safety zone” (red region in the right  
figure) of elements where gyro- 
averaging operation can be safely  
taken in the distributed domain. 

n This endows a particle migration  
policy such that particles moved out  
of safety zone should be migrated  
to one of MPI ranks which shares  
the element in safety zone.  

	

Safety zone of a 
local mesh for a 
sample group	
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Scatter (& Gather) with Mesh Distribution 

   Workflow with distributed mesh 
n [Prerequisite] All local marker particles in each rank located 

in safety zone of the local mesh 
n Charge scatter from marker-particles to vertices in left/right 

(real) poloidal planes  
n Gyro-averaging scatter by multiplying the scattered charges 

on each vertex with pre-calculated gyro-averaging factors 
n Reduction among MPI ranks sharing elements through PUMI 

   Gather is a reverse process of scatter. (From mesh to particle) 
n Vertices on different flux  

surfaces can have  
different number of  
MPI ranks sharing the  
same vertices 

n Handled by PUMI APIs 
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Field Solve Using PETSc 

   New field SOLVE consistent with workflow of XGC1 
   MSI: Mesh-Solver Interface 
n PUMI support for PETSc/Trilinos 
n Scatter and Back scatter for force vector & global matrix 

assembly are automatically handled by user-defined 
ownership from SOLVE partition 

n Debugging with a set of default solvers – will consult with 
PETSc experts for most appropriate set  

   2 level partition for SOLVE allows flexibility for 
n Number of Groups to solve (by exploiting buffer region) 

l Tested with a unit test code, not implemented yet 
n Number of MPI ranks in each group to solve 

   Initial test cases run 
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Status of Implementation and Next Steps 
   Status 
n Have defined a full set of methods for execution of XGC with 

a distributed mesh 
n An initial pass through the entire process is now implemented 

l Some specific short cuts on gather operation taken – do 
not affect overall process and will be eliminated shortly 

n Have some limited unit tests done 
n Just getting first full loop (with a specific option set) results 

   Immediate next steps 
n Towards supporting full optional capabilities of XGC1 
n Performance tuning and comparison 

   Longer term next steps 
n Get trusted version to do physics calculations 
n Optimization for new systems 

   We are still looking for at least one more postdoc 25


