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Talk Overview 

•  Physics Models 
•  EOS 
•  Conductivity 
•  Radiation 

•  Simulations of single pellet injection 
•  Verification of Scaling laws 
•  MHD effects 

•  Progress on simulation of SPI 
•  3D Lagrangian Particle code for multiple pellet fragments 



•  Low Magnetic Re MHD equations  
•  Equation of state with atomic processes 
•  Radiation model 
•  Conductivity models 
•  Pellet cloud charging models  

Physics Models for Pellet Simulations  

•  Explicitly tracked pellet surface 
•  Phase transition (ablation model)  

•  Kinetic model for the interaction 
of hot electrons with ablated gas 



Update on Physics Models 



LTE EOS for high-Z materials: Saha equations  
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•  Fully coupled system of nonlinear equations 
•  Difficult to solve in each point at each time step of a hydro code 
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EOS for high-Z materials: continuum approximation  
•  Further development of ideas by Zeldovich 
•  Continuum approximation: 
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The system of Saha equations 
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Verification of Zeldovich EOS model  

•  Very good agreement with coupled Saha equations for large ionization numbers 
•  There are questions whether the averaged ionization model is accurate for low Z 

•  Using statistical weights, we were able to improve the agreement 
•  The EOS is sufficiently accurate for hydro simulations from low to high Z 



•  Redlich-Kwong EOS for cold 
and dense gas 

Non-ideal gas EOS 
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•  We have derived the complete EOS (expressions for entropy, sound 
speed, Gruneisen gamma etc.) 
 
•  Somewhat similar EOS (Peng-Robinson EOS), recommended by GA 
collaborators, contains empirical terms.  

•  The derivation of complete EOS is problematic 
•  Performing EOS plots in pellet-related range of parameters, we 
showed that PR EOS is practically identical to RK EOS. 

 
•  Implemented RK in FronTier and coupled to WENO solvers 

•  In a thin layer near pellet surface, ideal EOS may not be accurate 



Non-ideal EOS model: Results  

•  Performed pellet simulations and showed that it has 
negligibly small effect on pellet ablation properties 
compared to the ideal EOS model 

•  RK and PR EOS models deviate 
from the ideal model only for 
densities larger than 1.e22 1/cc 
and T lower than 0.01 eV 

•  RK and PR EOS are practically 
identical 



Radiation models 
The photon mean free path in the ablation channel is much longer 
compared to the channel diameter and length 

•  The exception is the narrow region near the pellet surface, but the 
radiation coming from this region is very low 
•   Radiation model in thin optical limit is a good approximation 

de
dt
= −4σTe

4χPlank

χPlank is Plank’s emission opacity 
PROPACEOS tables provide this in tabular form 

Two models were compared in our simulations:  
 
•  Radiation model based on Jensen’s theory [R.V. Jensen et al, 

Nucl. Fusion, 17 (1977), 1187] (P. Parks provided tabulated data) 
 
 

•  Radiation model implemented in software from Prism Computational 
Sciences (PROPACEOUS tables) 



Comparison of 
Radiation Models 



Radiation Models: Conclusions 

•  Jensen radiation model is very close to PROPACEOUS non-LTE 
table 

•  PROPACEOSU LTE tables give orders of magnitude higher radiation 
•  Our models currently used Jensen radiation model 

•  There is also a difference between LTE and non-LTE EOS 
 
•  Current simulations use the Jensen radiation model  
•  An obvious inconsistency in simulations: 

•  LTE EOS model + non-LTE radiation model 
•  Two different averaged ionization numbers: one found from 

Zeldovich LTE equations and the other one from data table 

•  Do we need to use non-LTE EOS? 
•  Consistent simulations using PROPACEOUS non LTE EOS and 

radiation models? 
•  Using Z from non-LTE Jensen radiation model? 
•  Other ideas?  



Electric conductivity model for high-Z 
materials 

P. Parks (Jan. 2017)  



Verification: Comparison of Spherically 
Symmetric Simulations with Theory 



Ne pellet baseline case, no atomic processes, previous results  

€ 

γ = 5 /3, rp = 2  mm,  Te∞ = 2  keV,  ne∞ =1014  cm−3   
Case G (g/s) T* (eV) r* (mm) Psur/p* 

Semi-analytic 109.05 29.4167 5.858 6.478 

FronTier 112.8 30.11 6.025 6.44 

Case G (g/s) T* (eV) r* (mm) Psur/p* 

Semi-analytic 103.1 61.59 5.858 6.47796 

FronTier 
 

103.8 61.81 5.877 6.3046 

Ar pellet baseline case, no atomic processes 



€ 

γ = 5 /3, rp = 2  mm,  Te∞ = 2  keV,  

ne∞ =1014  cm−3   ,  neff =1.068 ×1013 cm−3  

Case G (g/s) T* (eV) p* (bar) 

Semi-analytic 51.74 6.623 5.858 

FronTier 52.6 6.69 5.21 

Ne pellet, electrostatic shielding effects, no atomic processes 

Case G (g/s) T* (eV) p* (bar) 

Semi-
analytic 

47.33 12.98 4.76 

FronTier 45.1 12.79 4.79 

Ar pellet, electrostatic shielding effects, no atomic processes 



Verification of Scaling Laws for Ne Pellet (new results) 



Verification of Scaling Laws for Ne Pellet 



Verification of Scaling Laws for Ne Pellet 



Influence of additiobal physics models 

•  Redlich-Kwong EOS has negligibly small effect on all processes 

•  Including atomic processes significantly changes the pressure 
and temperature, but the ablation rate was changed by only 4 % 
(no MHD) 



Cylindrically symmetric MHD simulations 

Simulation Parameters: 
 
•  Background electron density: 1.e14 1/cc – electrostatic shielding  

•  Electron Temperature: 2 keV 

•  Pellet radius: 2 mm 

•  “Warm-up time” (time during which the pellet crosses the pedestal: 
10 microseconds 

 
•  Magnetic field: 6T  

•  MHD in low magnetic Reynolds number approximation 

•  No artificial “channel length”, which was imposed in our earlier DT 
simulations 



Density, Temperature, Average Ionization at 1 microsecond 



Density, Temperature, Average Ionization at 5 microsecond 



Density, Temperature, Average Ionization at 10 microsecond 



Density, Temperature, Average Ionization at 15 microsecond 



Density, Temperature, Average Ionization at 20 microsecond 



Density, Temperature, Average Ionization at 70 microsecond 



Pressure (bar)  and Velocity (cm/ms = 10 m/s) at 20 microsecond 



Density across and along the ablation channel 



Temperature and Ionization across the ablation channel 



Effect of B field 
6T 



Effect of B field 
6T 



Effect of B field 
6T 



Models for SPI 



Lagrangian Particles vs FronTier 
•  FronTier’s main feature is the ability to track interfaces (ablation pellet 

surface, interface between ablated material and background plasma) 

•  Tracking the ablated material interface is not beneficial 
•  FronTier does not have AMR capabilities 

•  Difficult to resolve large density gradients near the pellet in 2D 
(practically impossible in 3D) 

•   FronTier must solve equations everywhere,  including the 
background plasma  
•  This “vacuum region” often leads to numerical instabilities 

•  An optimal solution to all outlined problems is the use of the 
Lagrangian Particle Method 
•  Continuous adaptivity to density changes 
•  Solve equations only for the ablated material, model the 

background (Lagrangian treatment of matter) 

•  Interfaces of arbitrary complexity, stable and accurate solvers 



Lagrangian Particle Method 



•   Traditional methods: Eulerian mesh-based PDE discretization with special algorithms for resolving 
interface (Volume-of-fluid, Level Set, Front tracking etc.) 

•  Enhancement by various adaptive features  (adaptive mesh refinement, AMR) 
•  Require very complex meshes, potential loading balancing problems 
•  Complexity causes potential difficulties in porting to new supercomputer architectures (GPU’s, 
Intel-MIC’s) 
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Grid-based vs. Particle-based 

Particle-based (meshless) methods: 
•  Exact conservation (Lagrangian formalism) 
•  Capable of simulating extremely large non-uniform domains (natural, continuous adaptivity) 
•  Ability to robustly handle material interfaces of any complexity 
•  Simplicity: 3D code is not much more complex compared to a 1D code 
•  Bridge the gap between continuum and atomistic approaches  



Motivation: Improvement of Accuracy 
and Convergence Order of SPH 

•  The main problem of traditional SPH (smooth particle hydrodynamics): 
very low accuracy of derivatives (zero-order, non-convergent), even for 
constant smoothing radius 

•    SPH derivative gives the similar accuracy to FD if particles are placed 
on rectangular mesh (due to cancellation of cross-terms) 

•  Accuracy rapidly decreases if particles even slightly deviate from the 
mesh 

•  The chain below is not based on rigorous approximation theory 
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Stability of traditional SPH 
 
•  Traditional SPH is very stable. SPH code does not crash even if 
solutions develop into unphysical states 
•  Replacing SPH derivatives with very accurate GFD (generalized finite 
difference, or moving least squares) derivatives produces an 
unconditionally unstable code! 
•  Why bad derivatives lead to a stable discretization and accurate 
derivatives lead to an unstable scheme? 

•  Inaccurate SPH discretization of Euler equations is identical to 
accurate Lagrange / Hamilton equations for the same particle system 
(interacting via isentropic potential energy) 
•  Hamiltonian structure is responsible for the long term stability 

•  Approximation of derivatives is related to linear errors 

39	
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New Lagrangian Particle Method 
 

•  We keep only one idea of SPH: each particle represents a Lagrangian fluid cell 
•  Need to satisfy accuracy, stability, and efficiency on modern hardware 
 
•  Key novel features of our method: 

•  Accuracy: derivatives based on generalized finite differences (optimal coefficients 
of a local stencil are found via least squares) 
•  Stable particle-based upwind and directionally unsplit methods were designed 

•  High order methods 
•  Scalability on modern supercomputer architectures 

•  Complementary method: Adaptive Particle-in-Cloud (AP-Cloud). AP-Cloud is an 
adaptive and artifact-free replacement for the traditional PIC method 

•  The code is fully parallel (GPU version in progress) 



Computing Derivatives. 
Local Polynomial Fitting (Generalized Finite Differences) 

41	

•  In 2D at the vicinity of a point 0, the function value in the location of a point i can be 
expressed as 

•  Second order approximation 

3.2.3 Local Polynomial Fitting

The local polynomial fitting on arbitrary sets of points has long been used to

obtain approximation of functions and their derivatives. Details of the method

and its accurracy is discussed in [20, 22, 23]. Generally, ⌫th order derivative

can be approximated with (n � ⌫ + 1)th order of accuracy using nth order

polynomial. For simplicity, a 2D example is discussed here. In the vicinity of

a point 0, the function value in the location of a point i can be expressed by

the Taylor series as
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where, Ui and U0 are the corresponding function values in the location of points

i and 0, hi = xi � x0, ki = yi � y0, and the derivatives are calculated in the

location of the point 0. A polynomial can be used to approximate the original

function and we employ a second order polynomial in this example:
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, respectively. In order to compute values of these variables,

we perform a local polynomial fitting using m >= 5 points in the vicinity of
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center point 0. The following linear system Ax = b
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is usually overdetermined. As a proper selection of a neighborhood is impor-

tant for accuracy and stability, neighbor search algorithms used in our upwind

solvers are described in the next subsection.

An optimal solution to (3.42) is a solution x that minimizes the L2 norm

of the residual, i.e.,

min
x

kAx� bk2, (3.43)

and the QR decomposition with column pivoting is employed to obtain x.

Suppose

A = Q

2

64
R

0

3

75P T ,m � n, (3.44)

where Q is an orthonomal matrix, R is an upper triangle matrix, and P is a

permutation matrix, chosen (in general) so that

|r11| � |r22| � · · · � |rnn|. (3.45)
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•  Using n neighbours: 
0 

i 

Solve using QR to obtain 
derivatives convergent to 

prescribed order 



Simulation Examples using Lagrangian Particles 

Kelvin-Helmholtz Instability 

Rayleigh-Taylor Instability 

Triple-point Riemann problem 
(producing shock, contact, vortex)  

Splash of tungsten powder 
CERN accelerator target prototype 



Implementation of Pellet / SPI code based on 
Lagrangian Particles 

•  We have largely completed full 3D Lagrangian particle-based pellet 
code 

•  Kinetic models, phase transition models, radiation, EOS etc was ported 
from FronTier  

•  Only one new complex module: algorithm for line integrals of density 
•  Task: In 2D, given N particles pi=(xi, yi), i={1,2,…,N}, calculate Ii, integral of density in 
(-inf, xi) along line y=yi. 

•  Sort particles in x ascending order; 

•  Divide the y domain into M cells Cj, j={1,2,…,M} with size dy. Initialize the Sj, integral 
in each cell to be zero; 

•  Iterate over all particles. For each particle pi=(xi,yi), find the cell Cj containing yi. Ii=Sj 
will be the integral of density up to pi. Add the contribution of pi to Sj: Sj=Sj+mi/dy, 
where mi is the mass of pi. 
•  Cells data is stored in hash table data structure to avoid wasting memory for cells 
containing no particles. 
•  3D algorithm is similar 



The density integral calculated on 
5 pellet clouds. The integral 
direction is from right to left in x).  
 
In the case of Poisson-Vlasov 
problems, with successfully 
worked with density changes by 
3 – 5 orders of magnitude 


