>} BERKELEY LAB

EEE

K@)

ENERGY

Performance
Analysis and Optimization

Samuel Williams

Computational Research Division
Lawrence Berkeley National Lab

mailto:SWWilliams@lbl.gov

Instrumentation

= Application-specific (manual) instrumentation...
* Most robust
 Minimal overhead (omp_get_time)
* |nsensitive to sampling effects
« Application-specific knowledge can different based on usage (e.g. different levels of MG)
« High effort / large reward

= Auto-instrumentation (TAU, Advisor, Vtune)...
« Minimal effort

* Integrated visualization

« Sampling effects can confuse performance analysis

« Using the same function many different ways can confuse analysis
« Can have high overhead (Advisor/Vtune)

— A
) ’\| A

BERKELEY LAB

Roofline Model

o0 e® <] o =@ & crd.Ibl.gov [}] a +

* The Roofline Model is a throughput-
oriented performance model...

« Tracks rates not time

—\\I COMPUTATIONAL RESEARCH

BERKELEY LAB

CRD PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS
—
d Roofline

Performance and Algorithms Research

 Augmented with Little’'s Law
ap o anes - Roofline Performance Model

= lat *bandwidth RESEARCH

C O n C u r re n Cy a e n Cy a n WI RESEARCH Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
multicore, manycore, or accelerator processor architectures. Rather than simply using percent-of-peak estimates, the model can be used to
assess the quality of attained performance by combining locality, bandwidth, and different parallelization paradigms into a single
performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance

* Independent of ISA and architecture e

AR Arithmetic Intensity
o e HPGMG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
I t C P U G P U G I T P U l t Roofiine total data movement (bytes). A BLAS-1 vector-vector increment (x{il+=yfi]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
(ap p I e S O S y S y O O g e S y e C -y 1 ScDAC 1 24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
TOP500 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
i would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would

Research
Auto-tuning

limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have

= |nforms developers which routines are T

underperforming the processor’s o AL
capabilities == which routines to ol

optimize —

—

SpMV
BLAS1,2
Stencils (PDEs)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

A
I

LJouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017. 3 ?f’f—fr\frl
BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Use by NESAP

= NESAP is the NERSC KNL application readiness project.

= NESAP used Roofline to drive optimization and analysis on KNL
« Bound performance expectations (ERT)
« Use Vtune to quantify DDR and MCDRAM data movement
« Compare KNL data movement to Haswell (sea of private/coherent L2’s vs. unified L3)
« Understand importance of vectorization

 Doerfer et al., "Applying the Roofline Performance Model to the Intel Xeon Phi Knights
Landing Processor", Intel Xeon Phi User Group Workshop (IXPUG), June 2016.

 Barnes et al. "Evaluating and Optimizing the NERSC Workload on Knights
Landing", Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), November 2016.

— A
4 ’\| A

BERKELEY LAB

2P HSW

KNL

Roofline for NESAP Codes

MEDnN

100000
10002
===Roofline@ModelZ
a
g 100¢ = =wo/FMAZ
O & 1RHSE
100 A ARHSE
¢ 8RHSE
10 . | 1
0.012 0.13 17 106
ArithmeticntensitygdFLOP/byte)z
100000
10002
===Roofline@ModelZ
a
S 1002 , = =wo/FMAH
o e
103 L 1RHSE
L 4RHSE
¢ 8RHSE
10 . | 1
0.012 0.13 17 106

ArithmeticntensitydFLOP/byte)z

EMGeo

100002

10003 e==Roofline@Model?
£ ” == *wo/FMAZ
S 1002 & Original®
G A SELLE

100 o SBI

18 | | i SELL+SBE

0.17 10 108 “ nNRHS+SELL+SBE

ArithmeticntensitydFLOP/byte)z

100002

10003 e==Roofline@Model?
£ == *wo/FMAZ
Q 1002 i Original@
G A SELLE

100 o SBI

18 | | i SELL+SBE

0.17 10 108 “ nNRHS+SELL+SBE

ArithmeticntensitydFLOP/byte)z

PICSAR

10000z
1000z
e==Roofline@Model?
a
S 1002 = =wo/FMAE
© i Original@
10 A w/Tiling®
¢ w/Tiling+Vect
18 . | [Tiling
0.1% 10 10@
ArithmeticAntensitydFLOP/byte)z
10000z
1000z
e==Roofline@Model?
a
S 1o0@ > = =wo/FMAE
© 'y E Original@
102 | A w/Tiling®
¢ w/Tiling+Vect
18 . | [Tiling
0.1% 10 10@

ArithmeticntensitydFLOP/byte)z

-~

A
rrrerrernr lll|

BERKELEY LAB

Intel Advisor

®@ce < s}

Intel Advisor is a performance analysis tool

On modem processors, it is becoming crucial to both vectorize (use AVX® or SIMD® instructions)

]
and thread software to realize the full performance potential of the processor. In some cases, code
eV 0 V e r 0 I I I V e C O r a V I S O r that is vectorized and threaded can be up to 187X faster than unthreaded/unvectorized code—and
about 7X faster than code that is only threaded or vectorized. And that gap is growing with every
new processor generation.

B
(]
B

software.intel.com

C“H_

o0
The Difference Is Growing With
Each New Generation of Hardware

= nersc.gov (v}

/[Site Map | My NERSC | & Share

SC

Powering Scientific Discovery Since 1974

s

Background -

Intel* xeon™ 2007 2009 2010 2012 2013 201‘ 2016
Srocessor. X5472 X5570 X680 ES-2600 E5-2600 v 600 v3 E5-2600
i s Wktlam: | Waore: Sy Wil yigs ol ool

= https://software.intel.com/en-us/intel-advisor-xe SEommmmmmamaTesasd e ADVISOR

Binomial Options Per Sec. SP
(Migher is Better)
-l
=]
~

HOME ABOUT SCIENCEATNERSC ~ SYSTEMS NEWSGPUBLCATIONS RED EVENTS LIVESTATUS TIMELINE

Home » For Users » Software » Performance and Debugging Tools » Advisor
FOR USERS

ey purchases, including My NERSC
SRS LY Getting Started
Threaded plus vectorized can be much faster than either one alone. The gap is grg Connecting to NERSC Introduction

N M M . M new hardware generation. Details. Accounts & Allocations Intel Advisor provides two workflows to help ensure that Fortran, C and C++ TABLE OF CONTENTS
" ttps://software.intel.com/en-us/articles/getting-started-withn- SRS <cxicr o v oo s s + mmaein

- - - (i s 20 [(N~ Storage & File Systems 2. Using el Achisor on Ecieon and

. - . P08 [2sviosves <[ssowces - Leops <[a8 Twest -] Application Performance « Vectorization Advisor (dentifies loops that will benefit most from vectorization, o ; e e
- - - _ CERBRly Data & Analytics specifies what is blocking effective vectorization, finds the benefit of altemative Options for Intel Advisor
B Foncion Cll St andloops & |10 | s Teme Job Logs & Statistics data and increases the confi that is safe. 4. Using the Advisor GUI

52572t i O Vectaland | 01871 Training & Tutorials 5. Roofline tool on Cori

g S0t tloopsE 748 Sclr a1 « Threading Advisor is used for threading design and prototyping and to analyze, g, pownloads.
floop in 3126 # loopethasT) & Scater s Software
e T e design, tune, and check threading design options without disrupting normal
User Environment
. * loop in 141 SompSparse for. 4 Scalar ol code development.
. ttps://www.youtube.com/watch?v= = == e
- . . H SETETT? 4 Scato Vesons 02881 SRR
licati I, fintel-advise
Intek® Advisor gives you data to forecast the performance gain before you invest sl A:'“ oo For more Intel Advisor visit
mpiers
in implementation. Implement only the options that have a high return on investmel S i orots Back o Top
rogramming s
G Using Intel Advisor on Edison and Cori
Data-Driven Vectorization Optimization and Threading Desi| Vorsion Gontrl Toos
e L o pHl o ing Sig Programming Libraries To launch Advisor, the Lustre File System should be used instead of GPFS. Either the command line tool, "advixe-ci” or the GUI
Performance and Debugging can be used. We recommend you to use the commandl ine tool, ‘inspxe-cl®, to collect data via batch jobs, and then display
You need good data to make good design decisions. What loops should be threadt Tools results using the GUI, *inspxe-gul’, on a login node on Edison.
vectorized first? Is the performance gain worth the effort? Will the threading perfort oOT
larger core counts? Does this loop have a dependency that prevents vectorization? Totalview Compiling Codes to Run with Advisor
- - trip counts and memory access pattems? Have | vectorized efficiently with the late: G0
| older SIMD instructions? Additional Compiler Flags
using older structions STAT and ATP In order to compile the code to work with Advisor, some additional flags need to be used.
CCDB and Igdb
Vectorization Optimization: Guidance to Speed up your Appli Vaigrind Cray Compiler Wrapper (ftn, cc, CC)
PM When using the Cray compiler wrappers to compile codes to work with Advisor, the '-g' and the '-dynamic’ flags should be used.
oyt It Is recommended that a minimum optimization level of 2 should be used for compliing codes that will be analyzed using Intel

e Advisor. To compile a C code for MPI as well as OpenMP, use the following command:

Viune

= http://www.nersc.gov/users/software/performance-and-
debuqgging-tools/advisor/

Darshan i cc -g -dynamic -openmp -02 -0 mycode.exe mycode.c

Here, the -g option is needed to assist Advisor to associate addresses to source lines, and the -dynamic option is needed to build
dynamically linked applications with the compier wrappers on Edison (the compiler wrappers, ftn, cc, and CC, link applications
statically by default).

co
Cofector

Grid Software and Services
Policies Without the -dynamic option, the following error is generated:
User Surveys

NERSC Users Group

Help

Staft Blogs

Roquest Repository Mailing

% module load advisor

% cc -g -openmp -0 mycode.exe mycode.c

% srun -n 1 -c 8 advixe-cl --collect survey --project-dir ./myproj -- ./mycode.exe
advixe: Error: Binary file of the analysis target does not contain symbols required for profilis

~

A
I

rrereer

BERKELEY LAB

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://www.youtube.com/watch?v=h2QEM1HpFgg
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

[JOX NoMachine - NERSC
&) /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advisor <@cori05> <2> e ®

File View Help

| Welcome | €000 (read-only) .
im | Elapsed time: 50.50s |¥ Not Vectorized

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~ INTEL ADVISOR 2017

@ Summary % Survey & Roofline @ Refinement Reports 4

= _ _ @ _ T. FLOPS w | Vectorized Loops

e§ /=] Function Call Sites and Loops & Self Time S |T. -)

o | Ti. GFLOPS ~ Al N vector I... | Efficiency | Gain Es... |V

E 30 [loop in bench_stencil_verd%o... & 159.595sH 15.V. 23.083 0.117 AVX2 | 100% |5.27x 4

= :# [loop in bench_stencil_ver3so... (] @1159.953sE15.V. 16.274mm 0.117 AVX2 | 89% |3.55x 4
[loop in bench_stencil ver2%o... (] ©1160.035sH16.V. 15.662 I 0.117 AVX2 | 80% |3.21x 4
[loop in bench_stencil verl$%o... (] ©1159.307sH15.V. 10.2180mm 0.117 AVX2 80% 3.21x 4

B@ [loop in bench_stencil_vero0... 157.994s[1| 1.S.

e I

Source | Top Down | Code Analytics | Assembly | ¥ Recommendations | @ Why No Vectorization?

Lin. Source Total Time | % Loop/Function Time | % Traits
25 #pragma omp parallel for 9.890s1

26 for(k=1;k<dim+1; k++){

27 for(j=1; j<dim+1; j++){

28 #pragma novector

. for(i=1; i<dim+1; i++){ 102.403s 157.994s s

30 int ijk = i*iStride + j*jStride + k*kStride;

31 new[ijk] = -6.0%old[1ijk 1 53.651s FMA
32 + old[ijk-iStride]

Selected (Total Time): 102.403s

~

- A
rrereer ||I|

BERKELEY LAB

[BON NoMachine - NERSC
& ¢ /global/cscratchl/sd/tkoskela/dram_roofline/stencil/advi.dram.stencil.aug2.16 - Intel Advisor <@cori05>

File View Help

Welcome | €000 ‘ M
@ | Elapsed time: 50.40s O Vectorized Not Vectorized MKL

FILTER:| All Modules ~|| All Sources ~|| Loops And Functions ~|| All Threads ~
Summary % Survey & Roofline ®j Refinement Reports - o 4
% Performance (GFLOPS) k |§| M« X [P ~ | () UseSingle-Threaded Roofs @ | ¥/ Show Hierarchical Data —
=y 1688.18 S e “__LTTEETTTDR Vector FMIA Peak: 168,18 GFLORS T
- E I-\._;":':_:__..E‘.-L__-_-_-_F_-_-_-__- _________________ s ._E_-._—_'_"_"_'_'_-_-__-___ e _

e i A ________rl.l:l*ﬁ‘l-—‘l'”"'l_l||p-—-—|| 4?7|'."'-|F|"pf

[loop in bench_stencil_ver4$Somp$parallel_for@193 at stencil_v2.c:193] ‘
Total Performance: 18.98 GFLOPS

0-66 | Total L1 Arithmetic Intensity: 0.41 FLOP/Byte
0.05 Self Elapsed Time: 0.000 s
E Self Elapsed Time: 0.000 s Total Elapsed Time: 9.956 s Total Elapsed Time: 9.956 s

Source | Top Down | Code Analytics | Assembly | ¥ Recommendations | @ Why No Vectorization?

Lin. Source Total Time | % Loop/Function Time | % Traits
191 StartTime = omp_get wtime();
192 while (ElapsedTime < TIME){
193 #pragma omp parallel for schedule(static,1) 8.004ms I 160161.000ms I
194 for(tile=0;tile<jTiles*kTiles; tile++)q

Selected (Total Time): 8.004ms

& Advixe-qui ;| @ emacs-gtk@cori05-bond0.224 | Elcori : '

A
rrereer llI|

BERKELEY LAB

lIkwid

" ||kW|d AMReX Application Characterization
_ (2Px16¢c HSW == Cori Phase 1)
 Performance counter infrastructure for x86 1024 ——
. . =3L3
 No sampling (simply reads counters) 512 BN DRAM
——Roofline
 <1% overhead (SDE/VTune/Advisor see >10x) T 056 —
« MPI Scalable (can run across many processes) a e
« Useful for high-level characterization (not connected to soure) %
. < 64
= Now runs on NERSC machines: 2
. m 32
« Verified on Haswell
* Needs Vtune and likwid modules w
8

« #SBATCH —perf=vtune
e Likwid-perfctr

-
(e 0]
X
o
<
N—r
X
>
Z

Nyx (32Px1T)

 Used to characterize AMReX ECP apps...

HPGMG (4Px8T)
MFIX (32Px1T)

e
|_
-
x
ol
q
™
N—’
=
|
@
o
(ol

WarpX (32Px1T)
WarpX (4Px8T)

-
—
X
o
AN
e
O
=
O
o
T

Combustor (32Px1T)
Combustor (4Px8T)

~

BERKELEY LAB

Threading vs. Processes

= Threads provide no inherent compute advantage over processes

= Threads incur additional overhead (omp parallel, single, barrier, ...) ==
slower In the perfectly parallel world

= Threads provide easy access to shared memory...

« Some codes are easier to parallelize with threads than MPI
« Easier to avoid data duplication (memory requirements) with threads than processes
 Threads can access shared data in cache rather than copying data between processes

« Using threads simplifies topology-aware MPI process mapping (MPICH _RANK REORDER
IS often insufficient)... topology-aware is still important on Aries/Dragonfly and IB/FatTrees

« Using threads provides on-ramp to GPUs and other emerging architectures

— A
l O rﬁ}l |"'|

BERKELEY LAB

Threading Experiments/Analysis

= FiX process concurrency, increase threading ...
« |deally, function runtime should scales as O(1/omp_num_threads)
« |dentify functions that plateau (saturation)
« |dentify functions that are flat (sequential bottlenecks)
 ldentify functions that increase (duplicated work... e.g. use of Fortran’s sum(a(:)))

» Fix hardware concurrency (cores), increase threads while reducing

processes.... (32x1, 16x2, 8x4, 4x8, 2x16, 1x32)...

« Distinguish true flat MPI (no —fopenmp) from hybrid w/1 thread (-fopenmp +
OMP_NUM_THREADS=1) == threading overhead

« |dentify functions that are flat, better with threads, or better with processes
« Especially useful for communication routines

— A
11 rf;}l |"'|

BERKELEY LAB

KNL-specific Issues

= GNU and Intel runtimes treat OMP_PLACES/PROC_BIND differently...

« use same compiler for all threaded routines / know which settings to use
* (luse KMP_AFFINITY with Intel)

= [f you can fit in 16GB, run in quadflat...
« avoids cache aliasing issues where some nodes are slower than others
« Can manifest as abnormally high MPI_Wait times and degraded scalability
 Use srun ... numactl—-m1 ./a.out ... (or use —p1 or no numactl but allocate key data in HBM)

= use large contiguous blocks with 2M pages for data and MPI buffers...

« Better performance for complex (less streaming) memory access patterns
 minimizes NIC TLB pressure == higher MPI bandwidth

= Examine vectorization reports...

 KNL is very slow if not vectorized —
12 r:}”mI

BERKELEY LAB

~

A
freeeer ""

BERKELEY LAB

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

Questions

5%, U.S. DEPARTMENT OF

