
Performance

Analysis and Optimization

Samuel Williams
SWWilliams@lbl.gov

Computational Research Division

Lawrence Berkeley National Lab

mailto:SWWilliams@lbl.gov

Instrumentation

 Application-specific (manual) instrumentation…

• Most robust

• Minimal overhead (omp_get_time)

• Insensitive to sampling effects

• Application-specific knowledge can different based on usage (e.g. different levels of MG)

• High effort / large reward

 Auto-instrumentation (TAU, Advisor, Vtune)…

• Minimal effort

• Integrated visualization

• Sampling effects can confuse performance analysis

• Using the same function many different ways can confuse analysis

• Can have high overhead (Advisor/Vtune)

2

Roofline Model

 The Roofline Model is a throughput-

oriented performance model…
• Tracks rates not time

• Augmented with Little’s Law

 (concurrency = latency*bandwidth)

• Independent of ISA and architecture

 (applies to CPUs, GPUs, Google TPUs1, etc…)

 Informs developers which routines are

underperforming the processor’s

capabilities == which routines to

optimize

3 1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Use by NESAP

 NESAP is the NERSC KNL application readiness project.

 NESAP used Roofline to drive optimization and analysis on KNL

• Bound performance expectations (ERT)

• Use Vtune to quantify DDR and MCDRAM data movement

• Compare KNL data movement to Haswell (sea of private/coherent L2’s vs. unified L3)

• Understand importance of vectorization

• Doerfer et al., "Applying the Roofline Performance Model to the Intel Xeon Phi Knights

Landing Processor", Intel Xeon Phi User Group Workshop (IXPUG), June 2016.

• Barnes et al. "Evaluating and Optimizing the NERSC Workload on Knights

Landing", Performance Modeling, Benchmarking and Simulation of High Performance

Computer Systems (PMBS), November 2016.

4

Roofline for NESAP Codes

5

1	

10	

100	

1000	

10000	

0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

Original	

w/Tiling	

w/Tiling+Vect	

1	

10	

100	

1000	

10000	

0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

Original	

w/Tiling	

w/Tiling+Vect	
1	

10	

100	

1000	

10000	

0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

Original	

SELL	

SB	

SELL+SB	

nRHS+SELL+SB	

1	

10	

100	

1000	

10000	

0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

Original	

SELL	

SB	

SELL+SB	

nRHS+SELL+SB	

1	

10	

100	

1000	

10000	

0.01	 0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

1	RHS	

4	RHS	

8	RHS	

1	

10	

100	

1000	

10000	

0.01	 0.1	 1	 10	

G
FL
O
P
/s
	

Arithme c	Intensity	(FLOP/byte)	

Roofline	Model	

wo/FMA	

1	RHS	

4	RHS	

8	RHS	2
P

 H
S

W

K
N

L

MFDn PICSAR EMGeo

Intel Advisor

Intel Advisor is a performance analysis tool

(evolved from vector advisor)

Background

 https://software.intel.com/en-us/intel-advisor-xe

 https://software.intel.com/en-us/articles/getting-started-with-

intel-advisor-roofline-feature

 https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems

 http://www.nersc.gov/users/software/performance-and-

debugging-tools/advisor/

6

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://www.youtube.com/watch?v=h2QEM1HpFgg
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/

7

8

likwid

 likwid
• Performance counter infrastructure for x86

• No sampling (simply reads counters)

• <1% overhead (SDE/VTune/Advisor see >10x)

• MPI Scalable (can run across many processes)

• Useful for high-level characterization (not connected to soure)

 Now runs on NERSC machines:
• Verified on Haswell

• Needs Vtune and likwid modules

• #SBATCH –perf=vtune

• Likwid-perfctr

• Used to characterize AMReX ECP apps…

9

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x
1

T
)

H
P

G
M

G
 (

4
P

x
8

T
)

C
o

m
b

u
s
to

r
(3

2
P

x
1

T
)

C
o

m
b

u
s
to

r
(4

P
x
8

T
)

M
F

IX
 (

3
2

P
x
1

T
)

N
y
x
 (

3
2

P
x
1

T
)

N
y
x
 (

4
P

x
8

T
)

P
e

le
L

M
 (
3

2
P

x
1

T
)

W
a

rp
X

 (
3

2
P

x
1

T
)

W
a

rp
X

 (
4

P
x
8

T
)

B
a
n

d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

Threading vs. Processes

 Threads provide no inherent compute advantage over processes

 Threads incur additional overhead (omp parallel, single, barrier, …) ==

slower in the perfectly parallel world

 Threads provide easy access to shared memory…
• Some codes are easier to parallelize with threads than MPI

• Easier to avoid data duplication (memory requirements) with threads than processes

• Threads can access shared data in cache rather than copying data between processes

• Using threads simplifies topology-aware MPI process mapping (MPICH_RANK_REORDER

is often insufficient)… topology-aware is still important on Aries/Dragonfly and IB/FatTrees

• Using threads provides on-ramp to GPUs and other emerging architectures

10

Threading Experiments/Analysis

 Fix process concurrency, increase threading …

• Ideally, function runtime should scales as O(1/omp_num_threads)

• Identify functions that plateau (saturation)

• Identify functions that are flat (sequential bottlenecks)

• Identify functions that increase (duplicated work… e.g. use of Fortran’s sum(a(:)))

 Fix hardware concurrency (cores), increase threads while reducing

processes…. (32x1, 16x2, 8x4, 4x8, 2x16, 1x32)…

• Distinguish true flat MPI (no –fopenmp) from hybrid w/1 thread (-fopenmp +

OMP_NUM_THREADS=1) == threading overhead

• Identify functions that are flat, better with threads, or better with processes

• Especially useful for communication routines

11

KNL-specific issues

 GNU and Intel runtimes treat OMP_PLACES/PROC_BIND differently…

• use same compiler for all threaded routines / know which settings to use

• (I use KMP_AFFINITY with Intel)

 If you can fit in 16GB, run in quadflat…

• avoids cache aliasing issues where some nodes are slower than others

• Can manifest as abnormally high MPI_Wait times and degraded scalability

• Use srun … numactl –m1 ./a.out … (or use –p1 or no numactl but allocate key data in HBM)

 use large contiguous blocks with 2M pages for data and MPI buffers…
• Better performance for complex (less streaming) memory access patterns

• minimizes NIC TLB pressure == higher MPI bandwidth

 Examine vectorization reports…

• KNL is very slow if not vectorized

12

Questions

