Nonlinear Mode Penetration Caused by Transient Magnetic Perturbations

CTTS Meeting April 22, 2018

M. T. Beidler, J. D. Callen, C. C. Hegna, and C. R. Sovinec

Department of Engineering Physics, University of Wisconsin - Madison

• **B**_{ext}: Magnitude of externally-applied field

• Background (0) and transient (T) contributions

• **B**_{ext}: Magnitude of externally-applied field

- Background (0) and transient (T) contributions
- **B**_{res}: Magnitude of field response at resonant surface

- **B**_{ext}: Magnitude of externally-applied field
- Background (0) and transient (T) contributions
- B_{res}: Magnitude of field response at resonant surface
- ω_{res} : Flow frequency at resonant surface

• **B**_{ext}: Magnitude of externally-applied field

- Background (0) and transient (T) contributions
- **B**_{res}: Magnitude of field response at resonant surface
- ω_{res} : Flow frequency at resonant surface
 - Large transient precipitates transition to a low-slip state, with penetrated $B_{\rm res}$

• **B**_{ext}: Magnitude of externally-applied field

- Background (0) and transient (T) contributions
- **B**_{res}: Magnitude of field response at resonant surface
- ω_{res} : Flow frequency at resonant surface
 - Large transient precipitates transition to a low-slip state, with penetrated $B_{\rm res}$
 - Small transient returns to a high-slip state, with screened $B_{\rm res}$

Motivation: External 3D Fields Cause Forced Magnetic Reconnection

- Externally applied 3D fields force magnetic reconnection (FMR)
- Islands can lock plasma to 3D field structure
- Fundamental physics governed by external forcing, flow, resistivity, and viscosity

Motivation: Transient MHD Events Cause Forced Magnetic Reconnection

- Externally applied 3D fields force magnetic reconnection (FMR)
- Islands can lock plasma to 3D field structure
- Fundamental physics governed by external forcing, flow, resistivity, and viscosity
- Transient MHD events are an additional source of 3D fields

Motivation: ELM Can Precipitate Transition to ELM-Free State

- Externally applied 3D fields force magnetic reconnection (FMR)
 - Islands can lock plasma to 3D field structure
 - Fundamental physics governed by external forcing, flow, resistivity, and viscosity
- Transient MHD events are an additional source of 3D fields; can induce transition
 - ELM can trigger ELM-suppressed state for large resonant magnetic perturbation (RMP)
 - Paz Soldan et al., PRL (2015); Nazikian et al., PRL (2015); Callen et al., UW-CPTC Report 16-4

Motivation: ELMs and Sawteeth Can Precipitate NTM Growth

- Externally applied 3D fields force magnetic reconnection (FMR)
 - Islands can lock plasma to 3D field structure
- Fundamental physics governed by external forcing, flow, resistivity, and viscosity
- Transient MHD events are an additional source of 3D fields; can induce transition
 - NTMs can be seeded by ELMs/sawteeth
 - La Haye, private communication (2016)

Motivation: NTMs Lead to Locked Mode Disruptions

- The largest cause of disruptions in JET are NTMs that grow and lock
 - de Vries et al., NF (2011)
 - 86% of NTMs triggered by sawteeth and 7% by ELMs

Mode Penetration Determined by Transient-Induced Force Evolution at Rational Surface

- **Begin in time-asymptotic, metastable state**
- Background external 3D magnetic field *B*_{ext.0} is flow-screened
- Electromagnetic (EM) and viscous forces balance

Mode Penetration Determined by Transient-Induced Force Evolution at Rational Surface

- **Begin in time-asymptotic, metastable state**
- Background external 3D magnetic field *B*_{ext.0} is flow-screened • Electromagnetic (EM) and viscous forces balance
- Transient 3D field $B_{ext,T}$ is added to $B_{ext,0}$
 - EM force increases due to evolving current and magnetic field
 - Forcing decreases flow locally Flow profile evolution induces viscous force

Mode Penetration Determined by Transient-Induced Force Evolution at Rational Surface

- Begin in time-asymptotic, metastable state
- Background external 3D magnetic field *B*_{ext,0} is flow-screened • Electromagnetic (EM) and viscous forces balance
- Transient 3D field $B_{ext,T}$ is added to $B_{ext,0}$
 - EM force increases due to evolving current and magnetic field
 - Forcing decreases flow locally Flow profile evolution induces viscous force
- Transient turns off and system continues to evolve
- Mutual evolution of forces determines final state

Explore dynamics of transient perturbation in slab geometry

Computational results elucidate mode penetration dynamics

Develop analytic model of mode penetration dynamics

Explore dynamics of transient perturbation in slab geometry

Computational results elucidate mode penetration dynamics

-

Develop analytic model of mode penetration dynamics

_

- Slab geometry with uniform out-of-plane current density
- Stable equilibrium with $\Delta' a \cong -2k_y a < 0$

- Slab geometry with uniform out-of-plane current density
- Stable equilibrium with $\Delta' a \cong -2k_y a < 0$
- Apply normal magnetic field $B_{x,1}(|x|=a) = B_{ext} \sin(k_y y)$
 - Drives reconnection at x = 0

Linear layer

- Slab geometry with uniform out-of-plane current density
- Stable equilibrium with $\Delta' a \cong -2k_y a < 0$
- Apply normal magnetic field $B_{x,1}(|x|=a) = B_{ext} \sin(k_y y)$
 - Drives reconnection at x=0
- Constant flow with $V_{y,0}$
 - Provides flow-screening physics
 - Flow frequency at x = 0: $\omega_{res} = k \cdot V = k_v V_v$

Linear layer

- Slab geometry with uniform out-of-plane current density
- Stable equilibrium with $\Delta' a \cong -2k_y a < 0$
- Apply normal magnetic field $B_{x,1}(|x|=a) = B_{ext} \sin(k_y y)$
 - Drives reconnection at x = 0
- Constant flow with $V_{y,0}$
 - Provides flow-screening physics
 - Flow frequency at x = 0: $\omega_{res} = k \cdot V = k_v V_v$
- Visco-Resistive dissipation parameters
 - $S = 1.1 \times 10^7$, $P_m = 20$
 - Linear layer width: $\delta_{VR} = S^{-1/3}P_m^{1/6}a = 7.4 \times 10^{-3}a$

• n=0 EM force per unit length in z at x=0

$\hat{F}_{a} =$	$\int^{\delta_{\mathrm{VR}}/2} dt$	$x \int^{L_y/2}$	$dy(\mathbf{J} \times \mathbf{B}) \cdot \hat{y} =$	$-\frac{n\pi}{10}$ Im	$\{B^*_{reg}\}$
у, ш түт •	$J_{-\delta_{ m VR}/2}$	$J_{-L_{y/2}}$		$\mu_0 k_y^2$	

• n=0 EM force per unit length in z at x=0

$$\hat{F}_{y,EM} = \int_{-\delta_{\rm VR}/2}^{\delta_{\rm VR}/2} dx \int_{-L_{y/2}}^{L_y/2} dy (\mathbf{J} \times \mathbf{B}) \cdot \hat{y} = -\frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \{B_{\rm res}^* [$$

• Linear, time-asymptotic, visco-resistive response:

$$B_{\rm res} = \frac{a\Delta'_{\rm ext}}{-a\Delta' + i\omega_{\rm res}\tau_{\rm VR}} B_{\rm ext} \rightarrow \hat{F}_{y,EM} = -\frac{\omega_{\rm res}\tau_{\rm VR}}{(-a\Delta')^2 + (\omega_{\rm res}\tau_{\rm VR})^2}$$

- R. Fitzpatrick, NF **33**, 1049 (1993)
- Quasilinear $F_{y,EM}$ localized at x=0

• n=0 EM force per unit length in z at x=0

$$\hat{F}_{y,EM} = \int_{-\delta_{\rm VR}/2}^{\delta_{\rm VR}/2} dx \int_{-L_{y/2}}^{L_y/2} dy (\mathbf{J} \times \mathbf{B}) \cdot \hat{y} = -\frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \{B_{\rm res}^* [$$

• Linear, time-asymptotic, visco-resistive response:

$$B_{\rm res} = \frac{a\Delta'_{\rm ext}}{-a\Delta' + i\omega_{\rm res}\tau_{\rm VR}} B_{\rm ext} \rightarrow \hat{F}_{y,EM} = -\frac{\omega_{\rm res}\tau_{\rm VR}}{(-a\Delta')^2 + (\omega_{\rm res}\tau_{\rm VR})^2}$$

- R. Fitzpatrick, NF **33**, 1049 (1993)
- Quasilinear $F_{y,EM}$ localized at x=0

• Viscous force per unit length in z at x=0 $\hat{F}_{y,VS} = \int_{-\infty}^{\delta_{\delta}/2} dx \int_{-\infty}^{L_y/2} dy \left[\nabla \cdot \rho \nu \nabla \nabla \right] \cdot \hat{y} = L_y \rho \nu_0 \left[\partial_x V(x,t) \right]_{x=0}$

• n=0 EM force per unit length in z at x=0

$$\hat{F}_{y,EM} = \int_{-\delta_{\rm VR}/2}^{\delta_{\rm VR}/2} dx \int_{-L_{y/2}}^{L_y/2} dy (\mathbf{J} \times \mathbf{B}) \cdot \hat{y} = -\frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \{B_{\rm res}^*[$$

• Linear, time-asymptotic, visco-resistive response:

$$B_{\rm res} = \frac{a\Delta'_{\rm ext}}{-a\Delta' + i\omega_{\rm res}\tau_{\rm VR}} B_{\rm ext} \rightarrow \hat{F}_{y,EM} = -\frac{\omega_{\rm res}\tau_{\rm VR}}{(-a\Delta')^2 + (\omega_{\rm res}\tau_{\rm VR})^2}$$

- R. Fitzpatrick, NF **33**, 1049 (1993)
- Quasilinear $F_{y,EM}$ localized at x=0

• Viscous force per unit length in z at x=0 $\hat{F}_{y,VS} = \int_{-\frac{\delta_{\delta}}{2}}^{\frac{\delta_{\delta}}{2}} dx \int_{-\frac{L_{y}}{2}}^{\frac{L_{y}}{2}} dy \left[\nabla \cdot \rho \nu \nabla \nabla \right] \cdot \hat{y} = L_{y} \rho \nu_{0} \left[\partial_{x} V(x,t) \right]_{x=0}$

• n=0 EM force per unit length in z at x=0

$$\hat{F}_{y,EM} = \int_{-\delta_{\rm VR}/2}^{\delta_{\rm VR}/2} dx \int_{-L_{y/2}}^{L_y/2} dy (\mathbf{J} \times \mathbf{B}) \cdot \hat{y} = -\frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \{B_{\rm res}^*[$$

• Linear, time-asymptotic, visco-resistive response:

$$B_{\rm res} = \frac{a\Delta'_{\rm ext}}{-a\Delta' + i\omega_{\rm res}\tau_{\rm VR}} B_{\rm ext} \rightarrow \hat{F}_{y,EM} = -\frac{\omega_{\rm res}\tau_{\rm VR}}{(-a\Delta')^2 + (\omega_{\rm res}\tau_{\rm VR})^2}$$

- R. Fitzpatrick, NF **33**, 1049 (1993)
- Quasilinear $F_{y,EM}$ localized at x=0

• Viscous force per unit length in z at x=0 $\hat{F}_{y,VS} = \int_{-\frac{\delta_{\delta}}{2}}^{\frac{\delta_{\delta}}{2}} dx \int_{-\frac{L_{y}}{2}}^{\frac{L_{y}}{2}} dy \left[\nabla \cdot \rho \nu \nabla \nabla \right] \cdot \hat{y} = L_{y} \rho \nu_{0} \left[\partial_{x} V(x,t) \right]_{x=0}$

EM and Viscous Force Balance Gives Rise to **Bifurcated, Metastable Equilibria**

EM and Viscous Force Balance Gives Rise to **Bifurcated, Metastable Equilibria**

- Force balance gives cubic relation for ω_{res} $\frac{\omega_0}{\omega_{\rm res}} - 1 + \omega_0 \omega_{\rm res} \tau_{\rm VR}^{\prime 2} - \omega_{\rm res}^2 \tau_{\rm VR}^{\prime 2} = \frac{a_\nu \tau_{\rm VR}}{4a\rho\nu_0} \left(\frac{\Delta_{\rm ext}^\prime}{-\Delta^\prime}\right)^2 \frac{B_{\rm ext}^2}{\mu_0}$
 - Here, $\tau_{\rm VR} = 2.104 \tau_{\rm A} S^{2/3} P_m^{1/6}$ and $\tau'_{\rm VR} \equiv \tau_{\rm VR} / (-a\Delta')$
- System bifurcates for $\omega_0 > 3\sqrt{3}/\tau'_{VR}$
- R. Fitzpatrick, NF **33**, 1049 (1993)

EM and Viscous Force Balance Gives Rise to Bifurcated, Metastable Equilibria

- Force balance gives cubic relation for ω_{res} $\frac{\omega_0}{\omega_{\rm res}} - 1 + \omega_0 \omega_{\rm res} \tau_{\rm VR}^{\prime 2} - \omega_{\rm res}^2 \tau_{\rm VR}^{\prime 2} = \frac{a_\nu \tau_{\rm VR}}{4a\rho\nu_0} \left(\frac{\Delta_{\rm ext}^\prime}{-\Delta^\prime}\right)^2 \frac{B_{\rm ext}^2}{\mu_0}$
 - Here, $\tau_{\rm VR} = 2.104 \tau_{\rm A} S^{2/3} P_m^{1/6}$ and $\tau'_{\rm VR} \equiv \tau_{\rm VR} / (-a\Delta')$
- System bifurcates for $\omega_0 > 3\sqrt{3}/\tau'_{VR}$
- R. Fitzpatrick, NF **33**, 1049 (1993)
- Two metastable equilibria: flow-screened and mode-penetrated
 - Shaded region is metastable
 - Existence of metastable equilibria enables transient-induced mode penetration

Transient Can Precipitate Transition Between Metastable Equilibria

• Hypothesis: If transient causes enough flow evolution, mode penetration occurs

Transient Can Precipitate Transition Between Metastable Equilibria

 Hypothesis: If transient causes enough flow evolution, mode penetration occurs

Outline

- - Time-asymptotic EM and viscous force balance
- Transient induced mode penetration needs metastable equilibrium

Develop analytic model of mode penetration dynamics

Explore dynamics of transient perturbation in slab geometry

Computational results elucidate mode penetration dynamics

Explore dynamics of transient perturbation in slab geometry

Computational results elucidate mode penetration dynamics

Develop analytic model of mode penetration dynamics

NIMROD Code Employed to Solve Visco-Resistive MHD Equations

- NIMROD capable of solving extended-MHD equations
 - Presently, assume cold plasma and ignore two-fluid effects

NIMROD Code Employed to Solve Visco-Resistive MHD Equations

- NIMROD capable of solving extended-MHD equations
 - Presently, assume cold plasma and ignore two-fluid effects
- Time discretization uses finite difference
 - Implicit leapfrog time evolution
 - Evolve perturbation fields about a fixed equilibrium

$$\begin{split} \rho \left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \boldsymbol{\nabla} \mathbf{V} \right) &= \mathbf{J} \times \mathbf{B} - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}_i \,, \\ \mathbf{\Pi}_i &\equiv -\rho \nu \left[\boldsymbol{\nabla} \mathbf{V} + \boldsymbol{\nabla} \mathbf{V}^T - \frac{2}{3} \boldsymbol{\nabla} \cdot \mathbf{V} \right], \\ \frac{\partial \mathbf{B}}{\partial t} &= -\boldsymbol{\nabla} \times \mathbf{E}, \ \mu_0 \mathbf{J} = \boldsymbol{\nabla} \times \mathbf{B}, \\ \mathbf{E} &= -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} \end{split}$$

NIMROD Code Employed to Solve Visco-Resistive MHD Equations

- NIMROD capable of solving extended-MHD equations
 - Presently, assume cold plasma and ignore two-fluid effects
- Time discretization uses finite difference
 - Implicit leapfrog time evolution
 - Evolve perturbation fields about a fixed equilibrium
- Spatial discretization uses 2D, C⁰, spectral elements Employ mesh packing at rational surface and edge

$$\begin{split} \rho \left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \boldsymbol{\nabla} \mathbf{V} \right) &= \mathbf{J} \times \mathbf{B} - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}_i \,, \\ \mathbf{\Pi}_i &\equiv -\rho \nu \left[\boldsymbol{\nabla} \mathbf{V} + \boldsymbol{\nabla} \mathbf{V}^T - \frac{2}{3} \boldsymbol{\nabla} \cdot \mathbf{V} \right], \\ \frac{\partial \mathbf{B}}{\partial t} &= -\boldsymbol{\nabla} \times \mathbf{E}, \ \mu_0 \mathbf{J} = \boldsymbol{\nabla} \times \mathbf{B}, \\ \mathbf{E} &= -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} \end{split}$$

Large Transient Induces Mode Penetration

- System properties
- $S = 1.1 \times 10^7$
- $P_m = 20$
- $V_0 = 500 \text{ m/s}$
- $B_{\text{ext},0} = 3 \times 10^{-4} \text{ T}$
- Transient properties
 - $B_{\text{ext},\text{T}} = 9 B_{\text{ext},0}$
 - $\Delta t_{\rm T} = 690 \, \tau_{\rm A}$ duration
 - Approximately square

Large Transient Induces Mode Penetration

- System properties
- $S = 1.1 \times 10^7$
- $P_m = 20$

OF WISCONSIN–MADISON

- $V_0 = 500 \text{ m/s}$
- $B_{\text{ext},0} = 3 \times 10^{-4} \text{ T}$
- Transient properties
 - $B_{\text{ext},\text{T}} = 9 B_{\text{ext},0}$
 - $\Delta t_{\rm T} = 690 \, \tau_{\rm A}$ duration
 - Approximately square
- Mode penetration forms nonlinear magnetic island

Flow Profile Evolution Determines Magnitude of Viscous Force

 Transient enhancement of viscous force due to local flow evolution

 $\hat{F}_{y,VS} = L_y \rho \nu_0 \left[\partial_x V(x,t') \right]_{x=0}$

Magnitude of Transient Is Critical For Flow Response and Mode Penetration

- System properties
- $S = 1.1 \times 10^7$
- $P_m = 20$
- $V_0 = 500 \text{ m/s}$
- $B_{\text{ext},0} = 3 \times 10^{-4} \text{ T}$
- Transient properties
- $\Delta t_{\rm T} = 690 \, \tau_{\rm A}$ duration
- Approximately square
- $B_{\text{ext},\text{T}} = 9 B_{\text{ext},0}$ mode penetrates
- $B_{ext,T} = 7.75 B_{ext,0}$ returns to high slip state

Magnitude of Transient Is Critical For Flow Response and Mode Penetration

- System properties
- $S = 1.1 \times 10^7$
- $P_m = 20$
- $V_0 = 500 \text{ m/s}$
- $B_{\text{ext},0} = 3 \times 10^{-4} \text{ T}$
- Transient properties
- $\Delta t_{\rm T} = 690 \, \tau_{\rm A}$ duration
- Approximately square
- $B_{\text{ext},\text{T}} = 9 B_{\text{ext},0}$ mode penetrates
- $B_{ext,T} = 7.75 B_{ext,0}$ returns to high slip state

Computed Field Response Is Similar to Experimental Observations

Mode Penetration Threshold Is Sensitive to Transient Shape

- Rise and fall time of transient parameterized as $T(t) = 1 - e^{-t/\tau_{\rm T}} - \frac{t}{\tau_{\rm T}} e^{-t/\tau_{\rm T}}$
- Transient properties
- $B_{\text{ext,T}} = 7.75 B_{\text{ext,0}}$
- $\Delta t_{\rm T} = 690 \, \tau_{\rm A}$ duration
- $\tau_{\rm T} = 69 \tau_{\rm A}$ mode penetrates
 - $\tau_{\rm T} = 6.9 \, \tau_{\rm A}$ returns to high slip state

Mode Penetration Threshold Is Sensitive to Transient Shape

- Rise and fall time of transient parameterized as $T(t) = 1 - e^{-t/\tau_{\rm T}} - \frac{t}{\tau_{\rm T}} e^{-t/\tau_{\rm T}}$
- Transient properties
 - $B_{\text{ext,T}} = 7.75 B_{\text{ext,0}}$
 - $\Delta t_{\rm T} = 690 \, \tau_{\rm A}$ duration
- $\tau_{\rm T} = 69 \tau_{\rm A}$ mode penetrates
 - $\tau_{\rm T} = 6.9 \, \tau_{\rm A}$ returns to high slip state
- Same time-integrated transient RMP can yield different final state!

Explore dynamics of transient perturbation in slab geometry

Computational results elucidate mode penetration dynamics

- Effects of transient perturbation on metastable equilibrium
- Parametric tests illustrate sensitivity of mode penetration

Develop analytic model of mode penetration dynamics

Explore dynamics of transient perturbation in slab geometry

Computational results elucidate mode penetration dynamics

Develop analytic model of mode penetration dynamics

Effect of Magnetic Transient Depends on EM and Viscous Force Evolution

 Hypothesis: If transient causes enough flow evolution, mode penetration occurs

Effect of Magnetic Transient Depends on EM and Viscous Force Evolution

- Hypothesis: If transient causes enough flow evolution, mode penetration occurs
- Flow evolution equation with EM and viscous forces:

$$\frac{\delta_{\rm VR} L_y \rho}{k_y} \frac{d\omega_{\rm res}}{dt} = \hat{F}_{\rm EM} + \hat{F}_{\rm V}$$
$$= -\frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[\partial_x B_{\rm res} \right]_{x=0} \right\} + \frac{n\pi}{\mu_0 k_y^2} \operatorname{Im} \left\{ B_{\rm res}^* \left[$$

- Transient magnetic perturbation causes forces to evolve
 - Directly increases EM force local to the rational surface
 - Local change in flow profile increases viscous force

n causes forces to evolve to the rational surface ases viscous force

$$\frac{dB_{\rm res}(t')}{dt} + \left[i\omega_{\rm res}(t') + \frac{a\Delta'}{\tau_{\rm VR}}\right]B_{\rm res}(t') = \frac{a\Delta'_{\rm ext}}{\tau_{\rm VR}}$$

Evolution of penetrated field governed by asymptotic matching of induction equation

- $\frac{\mathrm{t}}{2} \left[B_{\mathrm{ext},0} + B_{\mathrm{ext},\mathrm{T}} T(t') \right]$
- Background $B_{ext,0}$ is constant in time; transient $B_{ext,T}$ is applied with time-dependence T(t')

$$\frac{dB_{\rm res}(t')}{dt} + \left[i\omega_{\rm res}(t') + \frac{a\Delta'}{\tau_{\rm VR}}\right]B_{\rm res}(t') = \frac{a\Delta'_{\rm ext}}{\tau_{\rm VR}}$$

• Solve ODE for B_{res} by using integration factor

$$B_{\rm res}(t') = \frac{\Delta_{\rm ext}'}{-\Delta'} \exp\left[-\frac{t'}{\tau_{\rm VR}'} - i\varphi_{\rm res}(t')\right] \left\{\frac{B_{\rm ext}}{1 + i\omega_{\rm res}} + \frac{B_{\rm ext,T}}{\tau_{\rm VR}'} \int_0^{t'} ds \exp\left[\frac{s}{\tau_{\rm VR}'} + i\varphi_{\rm res}(s)\right] T\right\}$$

Evolution of penetrated field governed by asymptotic matching of induction equation

- $\frac{\mathbf{t}}{\mathbf{b}} \left[B_{\text{ext},0} + B_{\text{ext},T} T(t') \right]$
- Background $B_{ext,0}$ is constant in time; transient $B_{ext,T}$ is applied with time-dependence T(t')

 $\frac{\mathrm{xt},0}{\mathrm{s}(0)\tau'_{\mathrm{VR}}} + \frac{B_{\mathrm{ext},0}}{\tau'_{\mathrm{VR}}} \int_0^t ds \, \exp\left[\frac{s}{\tau'_{\mathrm{VR}}} + i\varphi_{\mathrm{res}}(s)\right]$ r(s)• History of flow frequency evolution quantified by $\varphi_{\rm res}(t') \equiv \int_0^{t'} ds \, \omega_{\rm res}(s)$

$$\frac{dB_{\rm res}(t')}{dt} + \left[i\omega_{\rm res}(t') + \frac{a\Delta'}{\tau_{\rm VR}}\right]B_{\rm res}(t') = \frac{a\Delta'_{\rm ext}}{\tau_{\rm VR}}$$

• Solve ODE for B_{res} by using integration factor

$$B_{\rm res}(t') = \frac{\Delta_{\rm ext}'}{-\Delta'} \exp\left[-\frac{t'}{\tau_{\rm VR}'} - i\varphi_{\rm res}(t')\right] \left\{\frac{B_{\rm ext}}{1 + i\omega_{\rm res}} + \frac{B_{\rm ext,T}}{\tau_{\rm VR}'} \int_0^{t'} ds \exp\left[\frac{s}{\tau_{\rm VR}'} + i\varphi_{\rm res}(s)\right] T\right\}$$

- Separate contributions due to initially penetrated field and transient RMP penetration

Evolution of penetrated field governed by asymptotic matching of induction equation

- $\frac{\mathbf{t}}{\mathbf{b}} \left[B_{\text{ext},0} + B_{\text{ext},T} T(t') \right]$
- Background $B_{ext,0}$ is constant in time; transient $B_{ext,T}$ is applied with time-dependence T(t')

 $\frac{\frac{\mathrm{d}t,0}{\mathrm{s}(0)\tau'_{\mathrm{VR}}} + \frac{B_{\mathrm{ext},0}}{\tau'_{\mathrm{VR}}} \int_0^{t'} ds \exp\left[\frac{s}{\tau'_{\mathrm{VR}}} + i\varphi_{\mathrm{res}}(s)\right]$ $\Gamma(s)$ • History of flow frequency evolution quantified by $\varphi_{res}(t') \equiv \int_0^{t'} ds \, \omega_{res}(s)$

$$\frac{dB_{\rm res}(t')}{dt} + \left[i\omega_{\rm res}(t') + \frac{a\Delta'}{\tau_{\rm VR}}\right]B_{\rm res}(t') = \frac{a\Delta'_{\rm ext}}{\tau_{\rm VR}}$$

- Background $B_{ext,0}$ is constant in time; transient $B_{ext,T}$ is applied with time-dependence T(t')
- Solve ODE for B_{res} by using integration factor

$$B_{\rm res}(t') = \frac{\Delta_{\rm ext}'}{-\Delta'} \exp\left[-\frac{t'}{\tau_{\rm VR}'} - i\varphi_{\rm res}(t')\right] \left\{\frac{B_{\rm ext}}{1 + i\omega_{\rm res}} + \frac{B_{\rm ext,T}}{\tau_{\rm VR}'} \int_0^{t'} ds \exp\left[\frac{s}{\tau_{\rm VR}'} + i\varphi_{\rm res}(s)\right] T\right\}$$

- Separate contributions due to initially penetrated field and transient RMP penetration
- Quasilinear EM force $\hat{F}_{y,\mathrm{EM}}(t') = -\frac{n\pi}{\mu_0 k_y^2} \Delta$
 - Separate contributions of $B_{\rm res}$ interact with transiently-induced current

Evolution of penetrated field governed by asymptotic matching of induction equation

 $\frac{\mathrm{t}}{\mathrm{E}} \left[B_{\mathrm{ext},0} + B_{\mathrm{ext},\mathrm{T}} T(t') \right]$

 $\frac{x_{\rm t,0}}{s(0)\tau'_{\rm VR}} + \frac{B_{\rm ext,0}}{\tau'_{\rm VR}} \int_0^t ds \, \exp\left[\frac{s}{\tau'_{\rm VR}} + i\varphi_{\rm res}(s)\right]$ $\Gamma(s)$ • History of flow frequency evolution quantified by $\varphi_{res}(t') \equiv \int_0^{t'} ds \, \omega_{res}(s)$

$$\Delta_{\text{ext}}' \left[B_{\text{ext},0} + B_{\text{ext},T} T(t') \right] \operatorname{Im} \left\{ B_{\text{res}}^*(t') \right\}$$

• Evaluate $\hat{F}_{y,V} = L_y \rho \nu_0 \left[\partial_x V(x,t') \right]_{x=0}$ with evolving V(x,t')

- Evaluate $\hat{F}_{y,V} = L_y \rho \nu_0 \left[\partial_x V(x,t') \right]_{x=0}$ with evolving V(x,t')
- $\partial_t V(x, t') = v_0 \partial_{xx}^2 V(x, t')$ with time-dependent BCs solved using infinite series expansion

• Because EM force is localized at x=0, solve for flow profile in $\theta < |x| < a_{\nu}$

- Evaluate $\hat{F}_{y,V} = L_y \rho \nu_0 \left[\partial_x V(x,t') \right]_{x=0}$
- $\partial_t V(x, t') = v_0 \partial_{xx}^2 V(x, t')$ with time-dependent BCs solved using infinite series expansion

$$V(x,t') = V_{\rm res}(t') + [V_0 - V_{\rm res}(t')] \left(\frac{x}{a_\nu}\right) - \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{a_\nu}\right) e^{-(n\pi)^2 \frac{t'}{\tau_\nu}} \\ \times \left\{ \frac{2}{a_\nu} \int_0^{a_\nu} dx \sin\left(\frac{n\pi x}{a_\nu}\right) \left[V(x,0) - \left\{ V_{\rm res}(0) + [V_0 - V_{\rm res}(0)] \left(\frac{x}{a_\nu}\right) \right\} \right] - \frac{2}{n\pi} \int_0^{t'} ds \frac{dV_{\rm res}(s)}{ds} e^{(n\pi)^2 \frac{s}{\tau_\nu}} \right\}$$

• Separate contributions due to time-asymptotic and transient $V_{res}(t)$

with evolving
$$V(x, t')$$

• Because EM force is localized at x=0, solve for flow profile in $\theta < |x| < a_{\nu}$

- Evaluate $\hat{F}_{y,V} = L_y \rho \nu_0 \left[\partial_x V(x,t') \right]_{x=0}$
- $\partial_t V(x, t') = v_0 \partial_{xx}^2 V(x, t')$ with time-dependent BCs solved using infinite series expansion / \sim / >

$$V(x,t') = V_{\rm res}(t') + [V_0 - V_{\rm res}(t')] \left(\frac{x}{a_\nu}\right) - \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{a_\nu}\right) e^{-(n\pi)^2 \frac{t'}{\tau_\nu}} \\ \times \left\{ \frac{2}{a_\nu} \int_0^{a_\nu} dx \sin\left(\frac{n\pi x}{a_\nu}\right) \left[V(x,0) - \left\{ V_{\rm res}(0) + [V_0 - V_{\rm res}(0)] \left(\frac{x}{a_\nu}\right) \right\} \right] - \frac{2}{n\pi} \int_0^{t'} ds \frac{dV_{\rm res}(s)}{ds} e^{(n\pi)^2 \frac{s}{\tau_\nu}} \right\}$$

- Separate contributions due to time-asymptotic and transient $V_{res}(t)$
- Using derived flow profile yields viscous force: $\hat{F}_{y,V}(t') = \frac{2L_y\rho\nu_0}{L_{1-1}} \bigg\{$ $\left[\omega_0 - \omega_{\rm res}(t')\right] + 2\left[\omega_{\rm res}(0) - \omega_{\rm res}(0)\right] + 2\left[\omega_{\rm res}(0) - \omega_{\rm$ $k_y a_\nu$

with evolving
$$V(x, t')$$

• Because EM force is localized at x=0, solve for flow profile in $\theta < |x| < a_{\nu}$

$$u_{\rm res}(t')]\sum_{n=1}^{\infty}\exp\left[-(n\pi)^2\frac{t'}{\tau_{\nu}}\right]$$

Model Of Self-Consistent Force Balance Exhibits Mode Penetration

 Balance EM and viscous forces against inertia, yields system of coupled PDEs:

 $\frac{\delta_{\rm VR} L_y \rho}{k_y} \frac{d\omega_{\rm res}(t')}{dt'} = \hat{F}_{\rm EM}(t') + \hat{F}_{\rm V}(t'), \ \frac{d\varphi_{\rm res}(t')}{dt'} = \omega_{\rm res}(t')$

Model Of Self-Consistent Force Balance Exhibits Mode Penetration

- Balance EM and viscous forces against inertia, yields system of coupled PDEs: $\frac{\delta_{\rm VR}L_y\rho}{k_y}\frac{d\omega_{\rm res}(t')}{dt'} = \hat{F}_{\rm EM}(t') + \hat{F}_{\rm V}(t'), \ \frac{d\varphi_{\rm res}(t')}{dt'} = \omega_{\rm res}(t')$
- Numerically solve system
- Solution shown for transient with $B_{\text{ext,T}} = 9 B_{\text{ext,0}}, \Delta t_{\text{T}} = 690 \tau_{\text{A}}, \tau_{\text{T}} = 6.9 \tau_{\text{A}}$

Model Of Self-Consistent Force Balance Exhibits Mode Penetration

- Balance EM and viscous forces against inertia, yields system of coupled PDEs: $\frac{\delta_{\rm VR}L_y\rho}{k_y}\frac{d\omega_{\rm res}(t')}{dt'} = \hat{F}_{\rm EM}(t') + \hat{F}_{\rm V}(t'), \ \frac{d\varphi_{\rm res}(t')}{dt'} = \omega_{\rm res}(t')$
- Numerically solve system
- Solution shown for transient with $B_{\text{ext},\text{T}} = 9 B_{\text{ext},0}, \Delta t_{\text{T}} = 690 \tau_{\text{A}}, \tau_{\text{T}} = 6.9 \tau_{\text{A}}$
- EM and viscous forces balance in time-asymptotic, mode penetrated state
- Recoil directly following transient due to slow response of viscous force

Qualitative Agreement Between Analytical Model and Computational Results

- Agreement with NIMROD during transient
 - Analytics yield mode penetration threshold at $B_{\text{ext},\text{T}} = 4.75 B_{\text{ext},0}$ (not shown)
 - Within factor ~ 2 of NIMROD results
 - In line with analytics from J.D.Callen poster P3.017

Qualitative Agreement Between Analytical Model and Computational Results

- Agreement with NIMROD during transient
 - Analytics yield mode penetration threshold at $B_{\text{ext,T}} = 4.75 B_{\text{ext,0}}$ (not shown)
 - Within factor ~ 2 of NIMROD results
 - In line with analytics from J.D.Callen poster P3.017
- Following transient, analytics over-predict penetrated field
 - Correlates with difference in time history of $\omega_{\rm res}$
 - Linear asymptotic matching procedure inadequate during nonlinear Rutherford evolution

Qualitative Agreement Between Analytical Model and Computational Results

- Agreement with NIMROD during transient
 - Analytics yield mode penetration threshold at $B_{\text{ext,T}} = 4.75 B_{\text{ext,0}}$ (not shown)
 - Within factor ~ 2 of NIMROD results
 - In line with analytics from J.D.Callen poster P3.017
- Following transient, analytics over-predict penetrated field
 - Correlates with difference in time history of $\omega_{\rm res}$
 - Linear asymptotic matching procedure inadequate during nonlinear Rutherford evolution
- Agreement with NIMROD for island phase shift φ_B during transient

Transient RMP can precipitate mode penetration

• Initial state must satisfy threshold for metastable state to exist $\omega_0 > 3\sqrt{3}/\tau'_{_{\rm VR}}$

Conclusions

Transient RMP can precipitate mode penetration

- Initial state must satisfy threshold for metastable state to exist $\omega_0 > 3\sqrt{3}/\tau'_{_{\rm VR}}$
- Computational results explore mode penetration dynamics
- Threshold sensitive to transient parameterization
- Sensitivity to shape suggests importance of the time history of evolution

Conclusions

- Transient RMP can precipitate mode penetration
 - Initial state must satisfy threshold for metastable state to exist $\omega_0 > 3\sqrt{3}/\tau'_{_{\rm VR}}$
- Computational results explore mode penetration dynamics
- Threshold sensitive to transient parameterization
- Sensitivity to shape suggests importance of the time history of evolution

Qualitative agreement between analytical and computational results

Conclusions

- Transient RMP can precipitate mode penetration
 - Initial state must satisfy threshold for metastable state to exist $\omega_0 > 3\sqrt{3}/\tau'_{_{\rm VR}}$
- Computational results explore mode penetration dynamics
- Threshold sensitive to transient parameterization
- Sensitivity to shape suggests importance of the time history of evolution

Take-away: While analytic models provide rough criteria for mode penetration due to transient RMPs, computational models are necessary for accurate dynamical predictions

Qualitative agreement between analytical and computational results

