Disruptions caused by ideal MHD

Year 1	Develop criteria for when locally exceeding β -limit leads to a disruption
Year 2	Develop validated model that reproduces thermal quench in an ideal MHD disruption
Year 3	Develop validated model for current quench that reproduces current spike and decay times
Ys 4-5	Interface M3D-C1 and NIMROD with runaway electron model as developed by SCREAM

Jardin, Kruger, Zhu

Vertical Displacement Events

Year 1	Benchmark NIMROD and M3D-C1 for axisymmetric VDE in toroidal geometry
	Parametric studies of influence of halo-region properties and compare with analysis
Year 2	Benchmark NIMROD and M3D-C1 for non-axisymmetric VDE in toroidal geometry
	Incorporate sheath effects in VDE computations
Year 3	Study effect of non-axisymmetric walls on VDE
Ys 4-5	Validation studies with DIII-D, NSTX, JET
	Study of wall forces in mitigated and unmitigated VDE

Sovinec, Ferraro, King, Strauss, Lyons, Held, Zhu, Krebs, Bunkers

Resistive Wall Modes

Year 1	Benchmark NIMROD and M3D-C1 for linear RWM in toroidal
	geometry
Year 2	Explore effect of rotation and two-fluid effects on RWM stability
Year 3	Nonlinear studies of RWM How does RWM precipitate thermal
	quench?
Ys 4-5	Explore kinetic effects on stability with NIMROD, M3D-C1/DK4D:
	Compare with MARS-K
	Explore disruptions caused by energetic particles (fishbone
	modes) interacting with RWM

Sovinec, Ferraro, King, Strauss, Lyons, Held, Zhu

Neoclassical Tearing Modes

Year 1	Implement DKE closures in M3D-C1 and NIMROD and verify
Year 2	Model NTM growth and saturation using DKE closures
Year 3	Understand the locking of NTMs from field errors, resistive wall. Compare with theory
Ys 4-5	Investigate how locked modes grow and cause disruptions

Kruger, Held, King, Lyons

Disruption Mitigation by Shattered Pellets

Year 1	Construct SPI plume model and develop tracking algorithms
	Develop 3D local pellet ablation model for FronTier-MHD and perform single-pellet tests
	Perform SPI scoping and sensitivity studies using NIMROD with an existing analytic SPI
	model
	Implement full ionization/recombination/radiation model in M3D-C1
Year 2	Implement pellet debris plumes into FronTier-MHD and test tracking algorithms.
	Perform SPI simulations and validation tests using FronTier-MHD and DIII-D experimental data
	Develop analytic kinetic heat flow models for use with NIMROD and M3D-C1
	Complete SPI scoping studies using NIMROD and M3D-C1 with an existing analytic SPI model.
Year3	Develop algorithms for coupling of FronTier-MHD pellet ablation with NIMROD and M3D-C1
	Test multiscale coupling algorithms using 1D FronTier pellet code and 1D PRL MHD code
	Start multiscale integration of Frontier-MHD with NIMROD and M3D-C1
Ys 4-5	Perform test of multiscale coupling of FronTier-MHD pellet ablation w. NIMROD and M3D-C1.
	Studies of accuracy, convergence, and stability, conservative properties of coupling algorithms
	Validation tests using FronTier-MHD/NIMROD and M3D-C1 and DIII-D experimental data.
	Perform extensive simulations of DIII-Data within UQ program.
	Perform validation simulations using JET data as available
	Perform simulations of SPI applied to ITER

Lao, Kim, Parks, Samulyak, Jardin, Ferraro, Lyons

Upcoming Meeting(s)

Theory and Simulation of Disruptions PPPL July 16-18, 2018