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• Disruptions result in rapid loss of 
stored plasma energy
– Thermal quench can melt of 

plasma-facing components 
– Current quench

• Can induce damaging wall 
forces

• Can produce dangerous 
runaway electrons

• Impurity injection can mitigate 
disruptions by radiating stored 
energy

• Two techniques under 
experimental and theoretical 
investigation
– Massive gas injection (MGI)
– Pellet injection

Future tokamaks will require disruption mitigation

MGI-triggered disruption in C-Mod
(a) Current quench
(b) Thermal quench

Runaway electrons detected by hard 
X-ray (c) and photo-neutron 

measurements(d) 

Izzo Nucl. Fusion 51 (2011) 063032 
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• Simulations, validated against mitigation experiments, are 
required to project techniques to future devices

• Integrated model is required to capture all relevant physics
• Magnetohydrodynamics (MHD) for macroscopic evolution of 

disruption dynamics
• Atomic physics for ionization and radiation from injected 

impurities
• Drift-kinetics for phase-space evolution of runaway electron 

population
• Here we present testing and benchmarking of coupled MHD-

atomic physics simulations
• Coupling KPRAD to M3D-C1
• Axisymmetric test of different coupling methods
• Benchmark with NIMROD

Modeling of disruption dynamics and mitigation 
requires a multiphysics model
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• Three-dimensional
• Includes resistivity, density diffusivity, viscosity, & thermal conductivity
• Two-fluid effects (optional)
• Linear and nonlinear modes
• High-order, C1 continuous finite element representation
• Mesh adapted to input equilibrium

M3D-C1 [1] is an extended-MHD solver

[1] S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012). 
[2] N.M. Ferraro et al., Phys. Plasmas 23, 056114 (2016)

A different set of equations is solved in each mesh
region. In the plasma region, the full two-fluid model is
implemented
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The implementation of the parallel and ion gyroviscosity, Pki
and P!

i , is described in more detail in Ref. 13, and these
terms are not included in the results presented here. Note
that the open field-line region between the last-closed flux

surface (LCFS) and the resistive wall, where the plasma has
low density and high resistivity, is also treated using these
equations.

The resistive wall region only includes the resistive
Faraday’s law
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In the external vacuum region, the only constraint is that the
field remains current-free

r & ~Bp¼ 0 (12)

(M3D-C1 uses a vector potential formulation of the magnetic
field, so r " ~B ¼ 0 is satisfied manifestly.)

Two types of time-steps are implemented in M3D-C1: a
split, semi-implicit method, in which the fluid velocity and
magnetic field are advanced separately, and a h-implicit
method in which all variables are advanced together.13 In
both cases, the magnetic field in the wall and external vac-
uum region is advanced simultaneously with the magnetic
field in the plasma; in fact, there is no distinction between
these fields in the code.

Although the~v, p, pe, and ni fields extend into the resis-
tive wall and external vacuum region, their values in these
regions do not enter into the dynamical equations and there-
fore do not affect the solution. In M3D-C1, these fields are
set to a constant value in these regions, and boundary condi-
tions on these fields are set at the interface between the resis-
tive wall region and the plasma region. In the calculations
presented here, no-slip, no-normal-flow (~v ¼ 0) conditions
are enforced on the velocity, and uniform Dirichlet condi-
tions are set on ni, p, and pe. There is no boundary condition
on ~Bp

at this interface; rather, the boundary condition that ~Bp

is constant is enforced on the computational domain bound-
ary (the boundary enclosing the external vacuum region).

III. RESISTIVE WALL MODE

In this section, we validate the implementation of the
resistive wall model in M3D-C1 by comparing the calculated
linear growth rate of a resistive wall mode in a straight cylin-
der against an analytic solution derived by Liu et al.14 The
equilibrium is given by

JzðrÞ ¼
J0 r < r0

0 r > r0;

'
(13)

BzðrÞ ¼ B0; (14)

qðrÞ ¼ q0 r < r0

0 r > r0;

'
(15)

with no equilibrium rotation, where z is the axial coordinate.
The perturbed fields are taken to have the form

d~B ¼ rw & ẑ; (16)

d~v ¼ r/ & ẑ; (17)

w ¼ ~w ðrÞeiðmh' nz=R0Þþct; (18)

FIG. 1. A mesh in which the resistive wall region is an approximation of the
DIII-D first wall is shown. The magenta line shows the magnetic separatrix.
The simulation domain boundary, vacuum-wall boundary, and wall-plasma
boundary are shown in purple, green, and blue, respectively. Right: a smaller
area of the mesh near the lower divertor, showing the discretization of the
resistive wall region.
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d~v ¼ r/ & ẑ; (17)
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w ¼ ~w ðrÞeiðmh' nz=R0Þþct; (18)

FIG. 1. A mesh in which the resistive wall region is an approximation of the
DIII-D first wall is shown. The magenta line shows the magnetic separatrix.
The simulation domain boundary, vacuum-wall boundary, and wall-plasma
boundary are shown in purple, green, and blue, respectively. Right: a smaller
area of the mesh near the lower divertor, showing the discretization of the
resistive wall region.

056114-3 Ferraro et al. Phys. Plasmas 23, 056114 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.188.106.240 On: Mon, 23
May 2016 16:23:46

A different set of equations is solved in each mesh
region. In the plasma region, the full two-fluid model is
implemented

@ni

@t
þr " ni~vð Þ ¼ 0; (2)

mini
@~v
@t
þ~v "r~v

! "
¼ ~J & ~B ' rp' r "Pi; (3)

@p

@t
þ~v "rpþ Cpr "~v ¼ C ' 1ð Þ gJ2 ' r "~q' Pi :~v

# $

þ 1

nee
~J " rpe ' C

rni

ni
pe

% &
;

(4)

@pe

@t
þ~v "rpe þ Cper "~v ¼ C ' 1ð Þ gJ2 ' r "~qe

# $

þ 1

nee
~J " rpe ' C

rni

ni
pe

% &
;

(5)

@~Bp

@t
¼ ' r & ~E; (6)

where

P ¼ ' lðr~v þr~vtÞ þPki þP!
i ; (7)

~E ¼ g~J ' ~v & ~B þ 1

nee
~J & ~B ' rpe

# $
; (8)

~q¼ ' jrðTe þ TiÞ; (9)

~qe;i ¼ ' jrTe ' jk
~B~B

B2
"rTe: (10)

The implementation of the parallel and ion gyroviscosity, Pki
and P!

i , is described in more detail in Ref. 13, and these
terms are not included in the results presented here. Note
that the open field-line region between the last-closed flux

surface (LCFS) and the resistive wall, where the plasma has
low density and high resistivity, is also treated using these
equations.

The resistive wall region only includes the resistive
Faraday’s law

@~Bp

@t
¼ ' r & gw

~Jp
# $

: (11)

In the external vacuum region, the only constraint is that the
field remains current-free

r & ~Bp¼ 0 (12)

(M3D-C1 uses a vector potential formulation of the magnetic
field, so r " ~B ¼ 0 is satisfied manifestly.)

Two types of time-steps are implemented in M3D-C1: a
split, semi-implicit method, in which the fluid velocity and
magnetic field are advanced separately, and a h-implicit
method in which all variables are advanced together.13 In
both cases, the magnetic field in the wall and external vac-
uum region is advanced simultaneously with the magnetic
field in the plasma; in fact, there is no distinction between
these fields in the code.

Although the~v, p, pe, and ni fields extend into the resis-
tive wall and external vacuum region, their values in these
regions do not enter into the dynamical equations and there-
fore do not affect the solution. In M3D-C1, these fields are
set to a constant value in these regions, and boundary condi-
tions on these fields are set at the interface between the resis-
tive wall region and the plasma region. In the calculations
presented here, no-slip, no-normal-flow (~v ¼ 0) conditions
are enforced on the velocity, and uniform Dirichlet condi-
tions are set on ni, p, and pe. There is no boundary condition
on ~Bp

at this interface; rather, the boundary condition that ~Bp

is constant is enforced on the computational domain bound-
ary (the boundary enclosing the external vacuum region).

III. RESISTIVE WALL MODE

In this section, we validate the implementation of the
resistive wall model in M3D-C1 by comparing the calculated
linear growth rate of a resistive wall mode in a straight cylin-
der against an analytic solution derived by Liu et al.14 The
equilibrium is given by

JzðrÞ ¼
J0 r < r0

0 r > r0;

'
(13)

BzðrÞ ¼ B0; (14)

qðrÞ ¼ q0 r < r0

0 r > r0;

'
(15)

with no equilibrium rotation, where z is the axial coordinate.
The perturbed fields are taken to have the form

d~B ¼ rw & ẑ; (16)

d~v ¼ r/ & ẑ; (17)

w ¼ ~w ðrÞeiðmh' nz=R0Þþct; (18)

FIG. 1. A mesh in which the resistive wall region is an approximation of the
DIII-D first wall is shown. The magenta line shows the magnetic separatrix.
The simulation domain boundary, vacuum-wall boundary, and wall-plasma
boundary are shown in purple, green, and blue, respectively. Right: a smaller
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implemented

@ni

@t
þr " ni~vð Þ ¼ 0; (2)

mini
@~v
@t
þ~v "r~v

! "
¼ ~J & ~B ' rp' r "Pi; (3)

@p

@t
þ~v "rpþ Cpr "~v ¼ C ' 1ð Þ gJ2 ' r "~q' Pi :~v

# $

þ 1

nee
~J " rpe ' C

rni

ni
pe

% &
;

(4)

@pe

@t
þ~v "rpe þ Cper "~v ¼ C ' 1ð Þ gJ2 ' r "~qe

# $

þ 1

nee
~J " rpe ' C

rni

ni
pe

% &
;

(5)

@~Bp

@t
¼ ' r & ~E; (6)

where

P ¼ ' lðr~v þr~vtÞ þPki þP!
i ; (7)

~E ¼ g~J ' ~v & ~B þ 1

nee
~J & ~B ' rpe

# $
; (8)

~q¼ ' jrðTe þ TiÞ; (9)

~qe;i ¼ ' jrTe ' jk
~B~B

B2
"rTe: (10)

The implementation of the parallel and ion gyroviscosity, Pki
and P!

i , is described in more detail in Ref. 13, and these
terms are not included in the results presented here. Note
that the open field-line region between the last-closed flux

surface (LCFS) and the resistive wall, where the plasma has
low density and high resistivity, is also treated using these
equations.

The resistive wall region only includes the resistive
Faraday’s law

@~Bp

@t
¼ ' r & gw

~Jp
# $

: (11)

In the external vacuum region, the only constraint is that the
field remains current-free

r & ~Bp¼ 0 (12)

(M3D-C1 uses a vector potential formulation of the magnetic
field, so r " ~B ¼ 0 is satisfied manifestly.)

Two types of time-steps are implemented in M3D-C1: a
split, semi-implicit method, in which the fluid velocity and
magnetic field are advanced separately, and a h-implicit
method in which all variables are advanced together.13 In
both cases, the magnetic field in the wall and external vac-
uum region is advanced simultaneously with the magnetic
field in the plasma; in fact, there is no distinction between
these fields in the code.

Although the~v, p, pe, and ni fields extend into the resis-
tive wall and external vacuum region, their values in these
regions do not enter into the dynamical equations and there-
fore do not affect the solution. In M3D-C1, these fields are
set to a constant value in these regions, and boundary condi-
tions on these fields are set at the interface between the resis-
tive wall region and the plasma region. In the calculations
presented here, no-slip, no-normal-flow (~v ¼ 0) conditions
are enforced on the velocity, and uniform Dirichlet condi-
tions are set on ni, p, and pe. There is no boundary condition
on ~Bp

at this interface; rather, the boundary condition that ~Bp

is constant is enforced on the computational domain bound-
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resistive wall model in M3D-C1 by comparing the calculated
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der against an analytic solution derived by Liu et al.14 The
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FIG. 1. A mesh in which the resistive wall region is an approximation of the
DIII-D first wall is shown. The magenta line shows the magnetic separatrix.
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area of the mesh near the lower divertor, showing the discretization of the
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method in which all variables are advanced together.13 In
both cases, the magnetic field in the wall and external vac-
uum region is advanced simultaneously with the magnetic
field in the plasma; in fact, there is no distinction between
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Although the~v, p, pe, and ni fields extend into the resis-
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fore do not affect the solution. In M3D-C1, these fields are
set to a constant value in these regions, and boundary condi-
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presented here, no-slip, no-normal-flow (~v ¼ 0) conditions
are enforced on the velocity, and uniform Dirichlet condi-
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is constant is enforced on the computational domain bound-
ary (the boundary enclosing the external vacuum region).

III. RESISTIVE WALL MODE

In this section, we validate the implementation of the
resistive wall model in M3D-C1 by comparing the calculated
linear growth rate of a resistive wall mode in a straight cylin-
der against an analytic solution derived by Liu et al.14 The
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FIG. 1. A mesh in which the resistive wall region is an approximation of the
DIII-D first wall is shown. The magenta line shows the magnetic separatrix.
The simulation domain boundary, vacuum-wall boundary, and wall-plasma
boundary are shown in purple, green, and blue, respectively. Right: a smaller
area of the mesh near the lower divertor, showing the discretization of the
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A different set of equations is solved in each mesh
region. In the plasma region, the full two-fluid model is
implemented
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low density and high resistivity, is also treated using these
equations.

The resistive wall region only includes the resistive
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In the external vacuum region, the only constraint is that the
field remains current-free
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(M3D-C1 uses a vector potential formulation of the magnetic
field, so r " ~B ¼ 0 is satisfied manifestly.)

Two types of time-steps are implemented in M3D-C1: a
split, semi-implicit method, in which the fluid velocity and
magnetic field are advanced separately, and a h-implicit
method in which all variables are advanced together.13 In
both cases, the magnetic field in the wall and external vac-
uum region is advanced simultaneously with the magnetic
field in the plasma; in fact, there is no distinction between
these fields in the code.

Although the~v, p, pe, and ni fields extend into the resis-
tive wall and external vacuum region, their values in these
regions do not enter into the dynamical equations and there-
fore do not affect the solution. In M3D-C1, these fields are
set to a constant value in these regions, and boundary condi-
tions on these fields are set at the interface between the resis-
tive wall region and the plasma region. In the calculations
presented here, no-slip, no-normal-flow (~v ¼ 0) conditions
are enforced on the velocity, and uniform Dirichlet condi-
tions are set on ni, p, and pe. There is no boundary condition
on ~Bp

at this interface; rather, the boundary condition that ~Bp

is constant is enforced on the computational domain bound-
ary (the boundary enclosing the external vacuum region).

III. RESISTIVE WALL MODE

In this section, we validate the implementation of the
resistive wall model in M3D-C1 by comparing the calculated
linear growth rate of a resistive wall mode in a straight cylin-
der against an analytic solution derived by Liu et al.14 The
equilibrium is given by
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BzðrÞ ¼ B0; (14)

qðrÞ ¼ q0 r < r0

0 r > r0;

'
(15)

with no equilibrium rotation, where z is the axial coordinate.
The perturbed fields are taken to have the form

d~B ¼ rw & ẑ; (16)

d~v ¼ r/ & ẑ; (17)

w ¼ ~w ðrÞeiðmh' nz=R0Þþct; (18)

FIG. 1. A mesh in which the resistive wall region is an approximation of the
DIII-D first wall is shown. The magenta line shows the magnetic separatrix.
The simulation domain boundary, vacuum-wall boundary, and wall-plasma
boundary are shown in purple, green, and blue, respectively. Right: a smaller
area of the mesh near the lower divertor, showing the discretization of the
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region. In the plasma region, the full two-fluid model is
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@~Bp

@t
¼ ' r & gw

~Jp
# $

: (11)
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field remains current-free
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(M3D-C1 uses a vector potential formulation of the magnetic
field, so r " ~B ¼ 0 is satisfied manifestly.)

Two types of time-steps are implemented in M3D-C1: a
split, semi-implicit method, in which the fluid velocity and
magnetic field are advanced separately, and a h-implicit
method in which all variables are advanced together.13 In
both cases, the magnetic field in the wall and external vac-
uum region is advanced simultaneously with the magnetic
field in the plasma; in fact, there is no distinction between
these fields in the code.

Although the~v, p, pe, and ni fields extend into the resis-
tive wall and external vacuum region, their values in these
regions do not enter into the dynamical equations and there-
fore do not affect the solution. In M3D-C1, these fields are
set to a constant value in these regions, and boundary condi-
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tive wall region and the plasma region. In the calculations
presented here, no-slip, no-normal-flow (~v ¼ 0) conditions
are enforced on the velocity, and uniform Dirichlet condi-
tions are set on ni, p, and pe. There is no boundary condition
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at this interface; rather, the boundary condition that ~Bp

is constant is enforced on the computational domain bound-
ary (the boundary enclosing the external vacuum region).
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resistive wall model in M3D-C1 by comparing the calculated
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der against an analytic solution derived by Liu et al.14 The
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• KPRAD [1] solves for impurity-plasma interaction in low-density, 
coronal equilibrium model
• Based on ADPAK rate coefficients
• Impurity charge states and electron density evolve according to 

ionization and recombination
• Thermal energy lost from plasma due to 

• Ionization
• Line radiation
• Bremsstrahlung radiation
• Recombination radiation

• Can be subcycled much faster than typical MHD time steps 

KPRAD provides need atomic physics information

[1] D.G. Whyte, et al., Proc. of the 24th Euro. Conf. on Controlled 
Fusion and Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 
21A, p. 1137. 
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• Ionization process
• Thermal energy converted to potential 

energy
• Electrons equilibrate causing dilution 

cooling
• Recombination process

• Thermal electron trapped by ion
• Thermal (kinetic) and potential energy 

released as radiation
• Potential (~101-103 eV) greatly exceeds 

kinetic in cold plasma (~100 eV)
• Only kinetic part of recombination 

radiation should be subtracted from 
plasma thermal energy

• We have updated KPRAD to split kinetic 
and potential recombination energy

Most recombination radiation comes from 
ionization/potential energy, not thermal/kinetic

Kinetic energy to potential energy

Kinetic & potential to radiation

Figure from Ahmadi & Ahmadi,
MSE Vol.119,159 - 166 (2016)
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• Total and electron pressure equations
– Electrons lose energy to ionization, line radiation, bremsstrahlung, 

and kinetic part of recombination radiation
– Main ions lose energy only through cooling on electrons

• Single pressure equation
– Evolve only total pressure equation (above)
– pe/p constant throughout time, implicitly assuming

• No thermal equilibration
• Losses split between ions and electrons by same fraction

KPRAD couples to the M3D-C1 pressure equation(s)
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• Electron and all-ions temperature equations
– Ions and electrons experience dilution cooling
– Electrons lose energy to ionization and radiation
– Main ions cool on electrons

• Single temperature equation
– Evolves sum over all species
– Te/Ti constant throughout time, implicitly assuming

• Instantaneous thermal equilibration
• Split of losses between species evolves as pressure ratio changes

KPRAD couples to the M3D-C1 temperature equation(s)
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• DIII-D shot 137611 @ 1950 ms
• 2D, nonlinear, single-fluid
• Neutral argon impurity deposition

– No impurities to start
– Gaussian source

– d = 0.25 m & n = 1023 m-3 s-1

• Ohmic heating artificially turned off
• Constant main ion density: 1020 m-3

• Constant diffusivities
– Isotropic density, momentum, and 

thermal diffusivities: 10 m2/s
– Parallel thermal diffusivity: 106 m2/s
– Resistivity: 10-5 Ohm*m, 7.96 m2/s

Fast argon injection in DIII-D core used as test case

Total power loss
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• Thermal quench times of about ~0.5 ms
• Dilution cools plasma at early times without changing total 

thermal energy
• Electron thermal energy rises for single-T due to electron 

density increasing faster than ion

Single pressure vs. temperature equation results: 
Qualitatively similar thermal quenches
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• KPRAD loss power mostly from line radiation and ionization
• KPRAD energy loss accounts for most of thermal energy change

– Single-p
• 2% less radiation than thermal energy (conduction?)

– Single-T
• 5% more radiation than thermal energy (dilution not conservative?)

• More careful energy accounting underway

Single pressure vs. temperature equation results: 
Radiation/ionization is dominant thermal energy sink

98%

105%
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Two pressure/temperatures still under-development

• Similar evolution of total 
thermal energies

• Electron thermal energies
– Exhibit strange behavior
– Negative temperatures seen 

in open-field-line region
– Numerical instability?

• Work will continue to fix issue
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• Solves extended-MHD equations with 
different methods from M3D-C1

• Current state of KPRAD coupling 
• Single temperature equation for electrons

• All particles are equal radiators, so Qa
scaled by pefrac

• Dilution is largest and most troublesome 
source term:
• Densities directly updated by KPRAD, no 

explicit source for density
• Possible mismatch in accounting under 

investigation

• Used in past MGI simulations and current 
pellet mitigation studies

Coupled NIMROD-KPRAD simulations used for MGI 
and pellet-mitigation simulations

NIMROD MGI simulation 
showing (a)current quench  
and (b)induced core MHD

Izzo Nucl. Fusion 51 (2011) 
063032 

0

a)

b)
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• Nearly identical setup to M3D-C1, but some differences
– Fixed boundary placed separatrix, so no open-field-line region
– Potential part of recombination radiation also subtracted from 

thermal energy
– Turning off KPRAD coupling at low-Te avoids any problems

• Initial benchmarking with M3D-C1 helped identify source of 
shortfall in radiated energy
– Due to double counting of source
– Trhs source term is missing pefrac=ne/ntot, ntot=ne+ni+nz+neutrals

• Similar fast-injection simulations also performed with neon

NIMROD also modeled fast-argon-injection test case
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• Total electron number nearly identical at early times, 
indicating similar ionization rates

• Difference over long time likely due to KPRAD turning off at low 
temperatures in NIMROD (no recombination)

Codes see similar rate of electron production
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Codes see qualitatively similar quenches, but 
quantitative differences

• NIMROD sees
• Less loss power despite similar 

charge states
• Slight increase in thermal 

energy early in time
• May indicate issue with dilution

• Detailed comparison of each 
source term underway
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• M3D-C1: thermal energy lost > radiated energy at all times
• NIMROD: balance changes sign with time
• Implementation of dilution may affect these too

Thermal & radiated energy balance evolves more in 
NIMROD simulations
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• KPRAD has been coupled to M3D-C1, providing ionization and 
radiation loss model

• Axisymmetric argon injection test
• Promising initial results showing thermal quench
• Fruitful benchmark with NIMROD ongoing

• Future work
• Continue 2D benchmark and track down source of discrepancies
• Perform benchmark with other impurity species (e.g., neon)
• Perform 3D nonlinear benchmark, allowing for MHD instabilities
• Implement pellet ablation model within M3D-C1
• Validate coupled KPRAD/M3D-C1 to DIII-D pellet-mitigation 

experiments
• Perform predictive simulations for ITER pellet mitigation

Conclusions
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• Charlson C. Kim
– Continuing SPI simulations of D3D and ITER
– Developing runaway electron capabilities in NIMROD (as part of SCREAM 

effort)
• Paul B. Parks

– Working with Roman on FRONTIER (later presentation)
– Preparing key paper for PoP submission: “The ablation rate of some low-Z 

pellets in fusion plasmas using a kinetic electron energy flux treatment”
• Yueqiang Liu

– Performing systematic scans of MGI with NIMROD
– Runs with radiation correction from benchmark are currently underway

Other CTTS work at GA
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Additional slides
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Plasma current
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Line radiation 
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Ionization loss
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Bremsstrahlung radiation 
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Recombination radiation 


