Multiphysics disruption modeling with M3D-C1

by Brendan C. Lyons¹

with N.M. Ferraro², S.C. Jardin², C.C. Kim³, Y.Q. Liu¹, L.L. Lao¹, and P.B. Parks¹

¹ General Atomics
 ² Princeton Plasma Physics Laboratory
 ³ SLS2 Consulting

Presented at the 2018 Sherwood Fusion Theory Conference Auburn, Alabama, USA

April 23, 2018

Future tokamaks will require disruption mitigation

- Disruptions result in rapid loss of stored plasma energy
 - Thermal quench can melt of plasma-facing components
 - Current quench
 - Can induce damaging wall
 forces
 - Can produce dangerous
 runaway electrons
- Impurity injection can mitigate disruptions by radiating stored energy
- Two techniques under experimental and theoretical investigation
 - Massive gas injection (MGI)
 - Pellet injection

MGI-triggered disruption in C-Mod (a) Current quench (b) Thermal quench Runaway electrons detected by hard X-ray (c) and photo-neutron measurements(d)

Izzo Nucl. Fusion 51 (2011) 063032

Modeling of disruption dynamics and mitigation requires a multiphysics model

- Simulations, validated against mitigation experiments, are required to project techniques to future devices
- Integrated model is required to capture all relevant physics
 - Magnetohydrodynamics (MHD) for macroscopic evolution of disruption dynamics
 - Atomic physics for ionization and radiation from injected impurities
 - Drift-kinetics for phase-space evolution of runaway electron population
- Here we present testing and benchmarking of coupled MHDatomic physics simulations
 - Coupling KPRAD to M3D-C1
 - Axisymmetric test of different coupling methods
 - Benchmark with NIMROD

M3D-C1 [] is an extended-MHD solver

- Three-dimensional
- Includes resistivity, density diffusivity, viscosity, & thermal conductivity
- Two-fluid effects (optional)
- Linear and nonlinear modes
- High-order, C¹ continuous finite element representation
- Mesh adapted to input equilibrium

S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012).
 N.M. Ferraro et al., Phys. Plasmas 23, 056114 (2016)

2

Lyons Sherwood 4/23/18

KPRAD provides need atomic physics information

- KPRAD [1] solves for impurity-plasma interaction in low-density, coronal equilibrium model
 - Based on ADPAK rate coefficients
 - Impurity charge states and electron density evolve according to ionization and recombination
 - Thermal energy lost from plasma due to
 - Ionization
 - Line radiation
 - Bremsstrahlung radiation
 - Recombination radiation

• Can be subcycled much faster than typical MHD time steps

[1] D.G. Whyte, et al., Proc. of the 24th Euro. Conf. on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 21A, p. 1137.

Most recombination radiation comes from ionization/potential energy, not thermal/kinetic

Ionization process

- Thermal energy converted to potential energy
- Electrons equilibrate causing dilution cooling

Recombination process

- Thermal electron trapped by ion
- Thermal (kinetic) and potential energy released as radiation
- Potential (~10¹-10³ eV) greatly exceeds kinetic in cold plasma (~10⁰ eV)
- Only kinetic part of recombination radiation should be subtracted from plasma thermal energy
- We have updated KPRAD to split kinetic and potential recombination energy

Kinetic & potential to radiation

Figure from Ahmadi & Ahmadi, MSE Vol.119,159 - 166 (2016)

• Total and electron pressure equations

- Electrons lose energy to ionization, line radiation, bremsstrahlung, and kinetic part of recombination radiation
- Main ions lose energy only through cooling on electrons

$$\frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p + \Gamma p \nabla \cdot \mathbf{v} = (\Gamma - 1) \left(\eta J^2 - \nabla \cdot \mathbf{q} - \mathbf{\Pi} : \mathbf{v} - \mathcal{P}_{rad} \right)$$

$$\frac{\partial p_e}{\partial t} + \mathbf{v} \cdot \nabla p_e + \Gamma p_e \nabla \cdot \mathbf{v} = (\Gamma - 1) \left(\eta J^2 - \nabla \cdot \mathbf{q_e} + Q_{ei} - \mathcal{P}_{rad} \right)$$

• Single pressure equation

- Evolve only total pressure equation (above)
- p_e/p constant throughout time, implicitly assuming
 - No thermal equilibration
 - Losses split between ions and electrons by same fraction

Electron and all-ions temperature equations

- Ions and electrons experience dilution cooling
- Electrons lose energy to ionization and radiation
- Main ions cool on electrons

$$n_{e} \left[\frac{\partial T_{e}}{\partial t} + \mathbf{v} \cdot \nabla T_{e} + \Gamma T_{e} \nabla \cdot \mathbf{v} \right] = (\Gamma - 1) \left(\eta J^{2} - \nabla \cdot \mathbf{q}_{e} + Q_{ei} - \mathcal{P}_{rad} \right) - T_{e} \left(\frac{\partial n_{e}}{\partial t} + \mathbf{v} \cdot \nabla n_{e} \right)$$
$$n_{ti} \left[\frac{\partial T_{i}}{\partial t} + \mathbf{v} \cdot \nabla T_{i} + \Gamma T_{i} \nabla \cdot \mathbf{v} \right] = (\Gamma - 1) \left(-\nabla \cdot \mathbf{q}_{i} - Q_{ei} - \mathbf{\Pi} : \mathbf{v} \right) - T_{i} \left(\frac{\partial n_{ti}}{\partial t} + \mathbf{v} \cdot \nabla n_{ti} \right)$$

 $n_{ti} = \sum n_s$

Single temperature equation \bullet

- Evolves sum over all species
- T_{e}/T_{i} constant throughout time, implicitly assuming
 - Instantaneous thermal equilibration
 - Split of losses between species evolves as pressure ratio changes ٠

$$n_{tot} \left[\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T + \Gamma T \nabla \cdot \mathbf{v} \right] = (\Gamma - 1) \left(\eta J^2 - \nabla \cdot \mathbf{q} - \mathbf{\Pi} : \mathbf{v} - \mathcal{P}_{rad} \right) - T \left(\frac{\partial n_{tot}}{\partial t} + \mathbf{v} \cdot \nabla n_{tot} \right)$$
$$n_{tot} = \sum_{s=e,i,z} n_s$$

Fast argon injection in DIII-D core used as test case

- DIII-D shot 137611 @ 1950 ms
- 2D, nonlinear, single-fluid
- Neutral argon impurity deposition
 - No impurities to start
 - Gaussian source

$$\frac{dn_z}{dt} = \nu \frac{R_0}{R} \exp\left[-\frac{(R-R_0)^2 + (Z-Z_0)^2}{2\delta^2}\right]$$

- $-\delta = 0.25 \text{ m} \& v = 10^{23} \text{ m}^{-3} \text{ s}^{-1}$
- Ohmic heating artificially turned off
- Constant main ion density: 10²⁰ m⁻³
- Constant diffusivities
 - Isotropic density, momentum, and thermal diffusivities: 10 m²/s
 - Parallel thermal diffusivity: 10⁶ m²/s
 - Resistivity: 10⁻⁵ Ohm*m, 7.96 m²/s

Single pressure vs. temperature equation results: Qualitatively similar thermal quenches

- Thermal quench times of about ~0.5 ms
- Dilution cools plasma at early times without changing total thermal energy
- Electron thermal energy rises for single-T due to electron density increasing faster than ion

Single pressure vs. temperature equation results: Radiation/ionization is dominant thermal energy sink

- KPRAD loss power mostly from line radiation and ionization
- KPRAD energy loss accounts for most of thermal energy change
 - Single-p
 - 2% less radiation than thermal energy (conduction?)
 - Single-T
 - 5% more radiation than thermal energy (dilution not conservative?)
- More careful energy accounting underway

Lyons Sherwood 4/23/18

Two pressure/temperatures still under-development

- Similar evolution of total thermal energies
- Electron thermal energies
 - Exhibit strange behavior
 - Negative temperatures seen in open-field-line region
 - Numerical instability?

Work will continue to fix issue

Lyons Sherwood 4/23/18

Coupled NIMROD-KPRAD simulations used for MGI and pellet-mitigation simulations

- Solves extended-MHD equations with different methods from M3D-C1
- Current state of KPRAD coupling
 - Single temperature equation for electrons

 $\frac{n_{\alpha}}{\Gamma-1} \left(\frac{\partial T_{\alpha}}{\partial t} + \mathbf{V}_{\alpha} \cdot \nabla T_{\alpha} \right) = -p_{\alpha} \nabla \cdot \mathbf{V}_{\alpha} - \nabla \cdot q_{\alpha} + \mathbf{Q}_{\alpha} - \Pi_{\alpha} : \nabla \mathbf{V}_{\alpha}$

- All particles are equal radiators, so Q_{α} scaled by pefrac
- Dilution is largest and most troublesome source term:
 - Densities directly updated by KPRAD, no explicit source for density
 - Possible mismatch in accounting under investigation
- Used in past MGI simulations and current pellet mitigation studies

NIMROD MGI simulation showing (a)current quench and (b)induced core MHD

Izzo Nucl. Fusion **51** (2011) 063032

NIMROD also modeled fast-argon-injection test case

- Nearly identical setup to M3D-C1, but some differences
 - Fixed boundary placed separatrix, so no open-field-line region
 - Potential part of recombination radiation also subtracted from thermal energy
 - Turning off KPRAD coupling at low-T_e avoids any problems
- Initial benchmarking with M3D-C1 helped identify source of shortfall in radiated energy
 - Due to double counting of source
 - Trhs source term is missing pefrac=ne/ntot, ntot=ne+ni+nz+neutrals
- Similar fast-injection simulations also performed with neon

Codes see similar rate of electron production

- Total electron number nearly identical at early times, indicating similar ionization rates
- Difference over long time likely due to KPRAD turning off at low temperatures in NIMROD (no recombination)

Lyons Sherwood 4/23/18

Codes see qualitatively similar quenches, but quantitative differences

NIMROD sees

M3D-C1

4

6

NIMROD (est.)

- Less loss power despite similar • charge states
- Slight increase in thermal • energy early in time
- May indicate issue with dilution •
- Detailed comparison of each source term underway

7

6

5

2

1

0

0

2

-33

E 4

 10^{12} 3

Thermal & radiated energy balance evolves more in NIMROD simulations

- M3D-C1: thermal energy lost > radiated energy at all times
- NIMROD: balance changes sign with time
- Implementation of dilution may affect these too

Lyons Sherwood 4/23/18

Conclusions

- KPRAD has been coupled to M3D-C1, providing ionization and radiation loss model
- Axisymmetric argon injection test
 - Promising initial results showing thermal quench
 - Fruitful benchmark with NIMROD ongoing
- Future work
 - Continue 2D benchmark and track down source of discrepancies
 - Perform benchmark with other impurity species (e.g., neon)
 - Perform 3D nonlinear benchmark, allowing for MHD instabilities
 - Implement pellet ablation model within M3D-C1
 - Validate coupled KPRAD/M3D-C1 to DIII-D pellet-mitigation experiments
 - Perform predictive simulations for ITER pellet mitigation

Other CTTS work at GA

Charlson C. Kim

- Continuing SPI simulations of D3D and ITER
- Developing runaway electron capabilities in NIMROD (as part of SCREAM effort)

Paul B. Parks

- Working with Roman on FRONTIER (later presentation)
- Preparing key paper for PoP submission: "The ablation rate of some low-Z pellets in fusion plasmas using a kinetic electron energy flux treatment"

• Yueqiang Liu

- Performing systematic scans of MGI with NIMROD
- Runs with radiation correction from benchmark are currently underway

Additional slides

Line radiation

Ionization loss

Bremsstrahlung radiation

Recombination radiation

