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Talk Overview 

•  Update on Physics Models and Apgorithms 
•  Conductivity 
•  Radiation 
•  Improved surface ablation algorithm 
•  Corrected coupling of WENO solver with Neon EOS 

•  Simulations of single pellet injection woth FronTier 
•  Verification of Scaling laws 
•  Hydro and MHD simulations, ablation rates 

•  Progress on simulation of SPI 
•  3D Lagrangian Particle code for multiple pellet 

fragments 
•  Hydro and MHD simulations, ablation rates 
•  Ideas for coupling to NIMROD / M3D-C1 



Update on Physics Models 
and Algorithms 



•  Low Magnetic Re MHD equations  
•  Equation of state with atomic processes 

(Zeldovich Average Ionization Model) 
•  Radiation model 
•  Conductivity models 
•  Pellet cloud charging models  

Physics Models for Pellet Simulations  

•  Explicitly tracked pellet surface 
•  Phase transition (ablation model)  

•  Kinetic model for the interaction 
of hot electrons with ablated gas 



Radiation models 
The photon mean free path in the ablation channel is much longer 
compared to the channel diameter and length 

•  The exception is the narrow region near the pellet surface, but the 
radiation coming from this region is very low 
•   Radiation model in thin optical limit is a good approximation 

de
dt
= −4σTe

4χPlank

χPlank is Plank’s emission opacity 
PROPACEOS tables provide this in tabular form 

Two models were compared in our simulations:  
 
•  Radiation model based on CRETIN code (P. Parks provided 

tabulated data) 
 
 

•  Radiation model implemented in software from Prism Computational 
Sciences (PROPACEOUS tables) 



Comparison of 
Radiation Models 

CRETIN code  

CRETIN code  



Electric conductivity model for high-Z 
materials 

P. Parks (Jan. 2017)  



Improvement of Pellet Ablation Surface 
Boundary Conditions 

The following boundary conditions are used: 
 
•  Fixed pellet T = 20K 

•  Ablated vapor normal velocity:  

•  EOS (density – temperature – internal energy constraint) 

•  Riemann wave curve: 

•  In addition, we tested simpler subsonic outflow boundary conditions 
used in NASA codes. Simulations results are very close  

 
•  The current improvement deals with situations when these BC’s do 

not apply  
•  Initial supersonic outflow: fixed BCs’ are used 
•  Zero mass flux (along pellet equator): BC’s are obtained using 

neighboring states 
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Improvement of pellet ablation boundary conditions 
resulted in steady ablation rates: 

Previous simulations showed 
increasing pellet ablation rate 
(perhaps very long transient 
oscillation) 

In current FronTier simulations, a 
steady state (with some 
oscillations) is reached in short 
time 



Verification: Comparison of Spherically 
Symmetric Simulations with Theory 



Verification of Scaling Laws for Neon Pellet 

 
ne = 1e14 
Te = 2 keV 



Verification of Scaling Laws for Ne Pellet 

 
ne = 1e14 
rp = 2 mm 



Influence of ionization 



Influence of ionization 

•  Including atomic processes significantly changes the pressure 
and temperature, but the density and velocity changes 
compensate each other, leading to practically unchanged ablation 
rate  

•  Results of LP simulations confirm this statement 



Cylindrically Symmetric Hydrodynamic Simulations  
(no JxB forces) 

•  Pellet radius = 2 mm 
•  Te = 2 keV 
•  Ne = 1.e14 with electrostatic shielding 
•  Averaged ionization EOS model with radiation losses 

•  Improved boundary conditions lead to fast convergence, 
approximately steady-state ablation rates (with some oscillations, 
but without global increase) 



Density, Temperature, and Ionization at 110 microseconds 



Cylindrically symmetric MHD simulations 

Simulation Parameters: 
 
•  Background electron density: 1.e14 1/cc – electrostatic shielding  

•  Electron Temperature: 2 keV 

•  Pellet radius: 2 mm 

•  “Warm-up time” (time during which the pellet crosses the pedestal: 
10 microseconds 
•  Effective ne ramped up from 0 to 1.068e13  
•  Te ramped up from 100 eV to 2 keV  

 
•  Magnetic field: 6T  

•  MHD in low magnetic Reynolds number approximation 
 



Density and Temperature in the Ablation Channel 

To mitigate instabilities in far 
field that arise early in the 
simulation,we introduce a 
density  cutoff on the heat 
deposition and LF. This cutoff 
starts at 1e-7 g/cc and the 
heat deposition and LF are 
reduced linearly (in log scale) to 
0 at density=1e-8 g/cc. Using 
this technique we are able to run 
the code for 40 microsec. 

Ablation rate: ~25 g/s.  
 
Higher resolution runs 
are in progress to 
study the convergence  



Models for SPI 



Implementation of Pellet / SPI code based on 
Lagrangian Particles 

•  Completed development of pellet ablation model based on Lagrangian 
particle (LP) code 

•  Advantages:  

•  Lagrangian treatment of ablated material – eliminated numerical 
difficulties caused by hot background plasma. Ablated material 
can be tracked during long time / distances 

 
•  Optimal and continuously adapting resolution 
 
•  Small computing time: 3D LP simulations with higher resolution 

near pellet are much fasted compared to 2D FronTier simulations 

•  LP is usable for hundreds of fragments in 3D 
 

•  Ionization EOS and MHD in LP have been recently added to the code 
and tested 

•  R. Samulyak, X. Wang, H.-S. Chen, Lagrangian Particle Method for 
Compressible Fluid Dynamics, J. Comput. Phys., 362 (2018),  1-19. 
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Main Ideas of Lagrangian Particle Method 
 •  New method. Motivation for development: improve accuracy of SPH which has 

ZERO convergence order (for original SPH)  
•  We keep only one idea of SPH: each particle represents a Lagrangian fluid cell 

•  We completely avoid using artificial smooth kernels of SPH by proposing new 
particle-based discretization methods 
•  Key novel features of our method: 

•  Accuracy: derivatives based on local polynomial fits (optimal coefficients 
of a local stencil are found via least squares) 
•  Stable particle-based upwind and directionally unsplit methods were 
designed 

•  High order methods 

•  Scalability on modern supercomputer architectures 

•  Lagrangian Particle code accurately reproduced numerous classical 
problems: Rayleigh-Taylor and Kelvin-Helmholtz in stabilities, triple-point 
(shock-vortex) problem, explosions / splashes etc. 

•  Complementary method: Adaptive Particle-in-Cloud (AP-Cloud). AP-Cloud is 
an adaptive and artifact-free replacement for the traditional PIC method (J. 
Comput. Phys, 2016 ) 



Computing Derivatives. 
Local Polynomial Fitting (Generalized Finite Differences) 
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•  In 2D at the vicinity of a point 0, the function value in the location of a point i can be 
expressed as 

•  Second order approximation 

3.2.3 Local Polynomial Fitting

The local polynomial fitting on arbitrary sets of points has long been used to

obtain approximation of functions and their derivatives. Details of the method

and its accurracy is discussed in [20, 22, 23]. Generally, ⌫th order derivative

can be approximated with (n � ⌫ + 1)th order of accuracy using nth order

polynomial. For simplicity, a 2D example is discussed here. In the vicinity of

a point 0, the function value in the location of a point i can be expressed by

the Taylor series as
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where, Ui and U0 are the corresponding function values in the location of points

i and 0, hi = xi � x0, ki = yi � y0, and the derivatives are calculated in the

location of the point 0. A polynomial can be used to approximate the original

function and we employ a second order polynomial in this example:
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, respectively. In order to compute values of these variables,

we perform a local polynomial fitting using m >= 5 points in the vicinity of
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center point 0. The following linear system Ax = b
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is usually overdetermined. As a proper selection of a neighborhood is impor-

tant for accuracy and stability, neighbor search algorithms used in our upwind

solvers are described in the next subsection.

An optimal solution to (3.42) is a solution x that minimizes the L2 norm

of the residual, i.e.,

min
x

kAx� bk2, (3.43)

and the QR decomposition with column pivoting is employed to obtain x.

Suppose

A = Q

2

64
R

0

3

75P T ,m � n, (3.44)

where Q is an orthonomal matrix, R is an upper triangle matrix, and P is a

permutation matrix, chosen (in general) so that

|r11| � |r22| � · · · � |rnn|. (3.45)
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•  Using n neighbours: 
0 

i 

Solve using QR to obtain 
derivatives convergent to 

prescribed order 



3D Hydro Lagrangian Particle Simulations 

•  LP hydro simulations of 2mm radius neon pellet (Left: view from 
far-field;  Right: zoom-in cloud) 

•  3D LP code runs much faster than 2D FronTier with the same 
resolution near the pellet 



3D MHD Lagrangian Particle Simulations: development of ablation channel  

5 microseconds 

10 microseconds 

15 microseconds 



3D MHD Lagrangian Particle Simulations: development of ablation channel  

20 microseconds 
 
Top: view from near-pellet 
 
Bottom: view from far field 



Ablation rate in LP simulations 

Ablation rates in LP 
 
•  Hydro, ideal gas: ~42 g/s (above, red) 
•  Hydro, average ionization model: ~ 41 g/s (above, blue) 
 
•  MHD, average ionization model: ~ 30 g/s 
•  Numerical convergence was fully reached for hydro simulations 

(with the increase of number of particles) 



SPI simulation 

•  We have started simulations of multiple pellet fragments 

•  The density integral calculated on 5 initial pellet clouds. The 
integral direction is from right to left in x 

•  Colors show accumulation of integrated line density from one 
fragment to another 



Code coupling ideas 

•  Lagrangian particle approach is a natural choice for coupling to global 
tokamak codes: 

•  Eulerian approach (FronTier) is not ideal for coupling: the 
background plasma is part of simulation and, therefore, must 
have artificial properties in hydro simulations 

•  Difficult to separate ablated material from background  
•  Density cut-offs cause problems in simulations as well 

•  Lagrangian approach (LP): the background plasma is not 
simulated (correct properties are assigned implicitly) 

•  Ablated material can be tracked for large distances 
•  Full 3D simulations 

 

•  With GA collaborators, we started working on the ideas for code 
coupling 

•  LP will provide sources to NIMROD and   M3D-C1 codes 
•  Density, temperature, ionization etc. of sources will be presented 

in terms of the same sets of basis functions used by tokamak 
MHD codes     


