Parameter Scan of Viscosity and Toroidal Deposition - NIMROD SPI Simulations ¹

Charlson C. Kim SLS2 Consulting charlson.c.kim@gmail.com

June 17, 2020

 $^{^{1}}$ GA ITER Contract ITER/CT/14/4300001108, US-DOE DE-FC02-04ER54698 and DE-FG02-95ER54309 and DE-SC0018109

NIMROD's Impurity Modified Single Fluid Resistive MHD Equations

Particle Based SPI Model Provides Discrete Moving Source of Neutrals

O does not resolve SPI fragment, assumes point particle of radius r_f with velocity $\vec{\mathbf{v}}_f$

- fragment time-of-flight: $\tau^{tof} = L_{axis} / |\vec{\mathbf{v}}_f|$ is key time scale
- does resolve ablated cloud
 - ullet Gaussian circle in poloidal plane and vonMises toroidal direction ϕ

• $S(\phi|\mu,\kappa) = \frac{e^{\kappa\cos(\phi-\mu)}}{2\pi I_0(\kappa)}$, centered at μ , $\kappa = 1/(2\pi \times d\phi)^2 \sim 1/\sigma^2$

- ablated cloud computed from mass ablation function $G(n_e, T_e, r_f, X)$ (P.Parks)
- **③** after deposition, KPRAD² based ionization/radiation subroutines takes over
 - same as NIMROD Massive Gas Injection³
- o particle based SPI model is flexible and easy to modify
 - easy to apply forces to fragments and add additional injectors

Flexible particle based source model applicable to many applications:

e.g. shell pellet, pellet fueling, ELM pacing, molecular beam, Li droplets

²D. G. Whyte, *GA Report* **A22639** 1997

³V. A. Izzo, NF 46 2006

C. C. Kim (SLS2)

DIII-D 160606@02990ms⁴, TE=0.7MJ, 1.28MA, q_{min} =1.05, q_0 =1.11

- 72×96 poly_degree=3, n=[0,21]
- NERSC Cori 704procs 96hrs \sim 100K cpu-hrs
- single upper injector, 2.0mm pure neon pellet, Shatter Parameter=10
- 10.0cm pencil beam of 200 fragments in 50 bunches, 200.0m/s
- vanguard fragment starts at lcfs

⁴Shiraki PoP 2016

NIMROD SPI Parameter Scan - Viscosity and Toroidal Deposition

viscosity	${\rm d}\phi/2\pi$	t_{rad}^{peak}	$ au_{TQ}$	t_{I}^{spike}	$P_{rad}^{peak}(GW)$	E_{rad}/E_{th}	assim.
$500 \text{m}^2/\text{s}$	0.10	1.417ms	1.478ms	1.728ms	0.50	40%	0.42
$250 m^2/s$	0.10	1.224ms	1.268ms	1.510ms	1.46	58%	0.66
$100 \text{m}^2/\text{s}$	0.10	1.180ms	1.227ms	1.390ms	0.93	45%	0.61
$500 \text{m}^2/\text{s}$	0.05	1.393ms	1.451ms	1.804ms	0.55	45%	0.34
$250 m^2/s$	0.05	1.320ms	1.379ms	1.680ms	0.64	47%	0.38
100m ² /s	0.05	1.245ms	1.316ms	1.670ms	0.64	44%	0.41

• Thermal Quench time $(au_{TQ}) \equiv \mathsf{N}_e^{max}$ (total e⁻ count)

- peak in radiated power preceeds au_{TQ} by ${\sim}50\mu{
 m s}$
- current spike few 100's μ s after au_{TQ}
- decreasing viscosity accelerated dynamics
 - stronger linear response (2,1),(3,2) (induced by ablation?)
 - earlier nonlinear saturation but not necessarily larger amplitude
- ullet more concentrated toroidal deposition (d $\phi)$ delays dynamics
 - deeper penetration but lower assimilation

Toroidal Deposition = 0.10, Scan in Viscosity [100,250,500]m²/s

- early evolution t=[0.0,0.7]ms similar
- viscosity impact on dynamics evident in time traces
- also impacts current quench and runaway dynamics

Toroidal Deposition = 0.05, Scan in Viscosity [100,250,500]m²/s

- $d\phi = 0.05$ shows more consistent behavior
- close to toroidal resolution limit
- requires higher mode number convergence test
- analysis continues

Viscosity=250m²/s, d ϕ = 0.10, τ_{TQ} =1.268ms

• kinetic energy small - few 100's J (TE=0.7MJ, ME=40.02MJ)

- early n=1 (t \simeq [0.0, 0.7]ms) dominated by fragment
- n=1 linear phase t $\simeq [0.7, 1.1]$ ms (2,1)
 - radiation peak does not coincide with mode peaks
 - radiation peak close to n=2 peak (3,2)
- \bullet peak at t=1.5ms associated with current spike, signals start of current quench

Viscosity=250m²/s, d ϕ = 0.10, τ_{TQ} =1.268ms

- early activity (t $\simeq [0.0, 0.7]$ ms) broad spectrum resolving deposition of fragments
- kinetic energy small few 100's J (TE=0.7MJ, ME=40.02MJ)
- (2,1) linear phase t \simeq [0.7, 1.1]ms, (3,2) linear phase t \simeq [1.0, 1.2]ms
 - radiation peak t=1.22ms
- current spike at t=1.5ms associated with mode energy MAX, start of current quench
 - ${\sim}250\mu s$ gap between end TQ and start of CQ

C. C. Kim (SLS2)

Viscosity=250m $^2/$ s, d ϕ = 0.10, au_{TQ} =1.268ms

- outboard midplane profile at t = [0.0, 0.5, 1.0, 1.235, 1.335, 1.475, 1.8375]ms
- core temperature maintained throughout early phase of quench (t=[0.0,0.5,1.0])
- impurities mix into core after rapid thermal collapse of core (t=[1.335,1.475,1.8375]ms)
- core temperature increases at t=1.8375ms \sim 40eV (lowest 10-20eV @ t=[1.335, 1.475]ms)

Poincare Plots - Viscosity=250m²/s, $d\phi = 0.10$, τ_{TQ} =1.268ms

C. C. Kim (SLS2)

1/16

Simultaneous Symmetric Multi-Injector SPI

• dual(180' separation, 200 fragments) and tri(120' separation, 150 fragments)

- $\tau_{TO}^{dual} = 1.374$ ms $\tau_{TO}^{tri} = 2.723$ ms, radiation fraction 46% and 70%
- tri-injector much more benign magnetic mode energy order of magnitude smaller
 - current spike absent
 - numeric curiosity probably physically unrealizable

Simultaneous Symmetric Multi-Injector SPI

- energy spectrum shows symmetric mode separation early on
- nonlinear mixing as fragment penetrates core / core collapse (t~1.2ms)
 - narrower deposition increases nonlinear mixing (recall APS19/CTTS presentation)
- n=1 emerges as dominant mode despite initial symmetry
 - tri-injector peak order of magnitude smaller than dual injector
- toroidal resolution marginal spikey structure in high-n, late in dual

120' Dual Injector SPI

- r_{frag} =0.2mm , d ϕ =0.10, visc=250m/s², 400 fragments
- τ_{TQ} =1.218ms, radiation fraction 58%, t^{spike}=1.418ms
- any finite delay reverts to single injector
 - thermal quench simulations require initial plasma rotation?
- each color represents 48hr on 704 Cori/Haswell ~140K cpuhrs
 - resolving quench to current spike is computationally most expensive

C. C. Kim (SLS2)

D2 Scan

• d ϕ =0.10, visc=250m/s², D2=[0×,10×,100×]Ne

• $\tau_{TQ} = [1.27, 1.57, 1.35]$ ms, radiation fraction [58, 50, 14]%, t^{spike} = [1.51, 2.61, 1.38]ms

- current spike significantly delayed for $D2{=}10{\times}Ne$
- D2=100×Ne has a 'softened/gentler' current spike
- analysis continues

Summary and Conclusions

- \bullet lower viscosity \rightarrow shorter thermal quench time due to stronger linear response
 - faster growth rates and earlier saturation
 - saturation amplitude may vary outside of trend
 - peak radiated power and radiation fraction also vary
 - also has impacts current quench and runaway dynamics
- $\bullet~{\rm d}\phi{=}0.05$ looks "converged" but close to toroidal reolution limit
 - computation more challenging and costly
 - use $d\phi = 0.10$ as standard
- more energetic plasmas are more even more challenging
 - 137611@01950ms : TE=1.05MJ, ME=62.2MJ, I=1.46MA
 - DIII-D SuperH : TE=2.23MJ, ME=62.2MJ, I=1.56MA
 - JET, KSTAR, ITER
- relativistic drift kinetic equations implemented for hybrid kinetic-MHD model in NIMROD
 - continuing development and benchmark against MARS results
 - coordinating with M3D for a benchmark
 - working with CQL3D to couple codes and benchmark

Viscosity=100m 2 /s, d ϕ = 0.05, au_{TQ} =1.316ms

- late high-n spikes are typical
 - probable culprit in numeric terminations
 - worse for higher energy density equilibria
- toroidal resolution marginal

1/1