
A new energetic particle module in M3D-C1 with GPU
acceleration

Chang Liu

Princeton Plasma Physics Laboratory

CTTS Meeting
April 29 2020

1

Motivation of developing particle module in M3D-C1

• We want to have the same capability of the kinetic module of M3D-K
code in M3D-C1, to study the interaction between energetic ions and
MHD activities (Alfvén waves, kink/tearing modes etc).

• With more advanced finite-element representation and implicit time
advance method, M3D-C1 can study the nonlinear problem with larger
timestep and save computation time.

• Explicit particle pushing can be accelerated using modern HPC with GPU,
like in PIC codes.

2

Overview

1. Implementation of kinetic physics in M3D-C1 framework

2. GPU acceleration of particle pushing

3. Simulation results and benchmark with other codes

4. Summary

3

Outline

1. Implementation of kinetic physics in M3D-C1 framework

2. GPU acceleration of particle pushing

3. Simulation results and benchmark with other codes

4. Summary

Particles loading and initialization

Two ways to load particles
• In M3D-K, particles are loaded homogeneously in both real and
momentum space. Each particle will then carry a f0 that will appear in
the weight equation.

• It is OK for slowing-down distribution, but very expensive for Maxwellian
distribution.

• In NIMROD, particles are loaded following f0 through a Monte-Carlo
sampling method.

• Some codes (like GTS) use
homogeneous loading in
configuration space, and Monte Carlo
sampling in momentum space.

• We have tried all the methods and
obtained similar result. The
Monte-Carlo sampling method is the
most efficient.

Loaded particle distribution using Monte-Carlo sampling

4

Particle pushing

dX
dt =

1
B∗

(
v‖B∗ − b× E∗

)
m
dv‖
dt =

q
B∗ B

∗ · E∗

B∗ = B+
mv‖
e ∇× b, B∗ = B∗ · b

E∗ = E−
mv‖
e

∂b
∂t − µ

q∇B

• Particle markers are advanced using 4th order Runge-Kutta.
• In guiding center mode, the fields are evaluated at the guiding center.
In gyrokinetic mode, the fields are calculated using 4-point averaging
along the gyro orbit.

• In the linear run, markers follow drift kinetic equations with
equilibrium B fields only.

• We have tested the energy and Pφ conservation in the long-term run. The
error is less than 10−4 for 1ms, and it is not accumulating.

5

Weight evolution

δf method dδf
dt = −δż · ∂f0

∂z

dw
dt =

δḟ
f =

1− w
f0

(−δv · ∇f0 − ε̇∂εf0)

• Here we use energy derivative (ε̇) to calculate weight evolution, which
is not consistent with the guiding center equation (v̇‖) but easier to
implement. Will change to v̇‖ in future.

• The change of Jacobian (B∗
‖) can be taken into account by introducing a

new weight d = w + (1− w)δB∗
‖/B∗

‖0, like in Belova (1997).

E.V. Belova, R.E. Denton, and A.A. Chan, J. Comp. Phys. 136, 324 (1997).

6

Particle deposition

• Parallel and perpendicular pressure are calculated from particles using
δ-function deposition ∫

νP‖gdx =
∑
i

mv2i,‖ν(xi)∫
νP⊥gdx =

∑
i

µiB(xi)ν(xi)

• We can add a small diffusion to the obtained P‖ and P⊥ to reduce noise,
but it will break the energy conservation of the coupling scheme.

• The calculated P‖ and P⊥ can be used for both pressure and current
coupling to MHD equations.

• Pressure coupling
∇ · P = ∇P⊥ +∇ ·

(
P‖ − P⊥

)
bb

• Current coupling

Jhot × B =
P‖
B2
b×∇× b−

P⊥
B2

∇⊥ lnB−∇×
(
P⊥
B
b
)

× B

• This does not include current due to “moving dipole” effect.

J.W. Burby and C. Tronci, Plasma Phys. Control. Fusion 59, 045013 (2017). 7

Outline

1. Implementation of kinetic physics in M3D-C1 framework

2. GPU acceleration of particle pushing

3. Simulation results and benchmark with other codes

4. Summary

The importance of migrating code to GPU

• Many of the newly built supercomputers utilize GPU to reach high
computation power.

• In Traverse, a new cluster built by PPPL and Princeton University, 97% of
computing power comes from GPU.

• GPU can be regarded as a co-processor with many cores and a shared
memory.

• Computation on a single GPU core is slower than on a single CPU core,
especially for logical operations.

• GPU should be used to do strongly parallel jobs with each job very simple,
and particle pushing is indeed a suitable job.

• With the help of new API like OpenMP4 or OpenACC, it is now easier to
migrate the existing code to run on GPUs.

• Most of the migration work is related to communications between GPU and
CPU (offloading), since they have separate memory.

• Existing MPI structure of the code can complicate the work.

8

Combining distributed memory and shared memory

• Currently M3D-C1 use MPI processes for parallelization, with domain
decomposition and distributed memory mode.

• Each process only knows the information about a small subdomain of the
whole 3D mesh.

• The most efficient way to push particles in GPU is to use particle-based
data structure, and each particle is pushed independently.

• This is more memory-consuming since every GPU needs the field
information of the whole mesh. Fortunately for modern GPU with >16GB
RAM, this is not a problem.

• Previously we use a mesh-based data structure to store particle data. This
leads a lot of communication due to particles particles moving from one
mesh to the other.

• To incorporate the distributed-memory M3D-C1 and share-memory
particle pushing, we exploit two methods for data sharing

• Shared memory function (within one node) introduced in MPI-3.
• MPI_Allgatherv between different nodes

9

Procedure and data flow in a particle pushing step

Parent
Process

Child
Process

Child
Process

● ● ●

① E&B field (shared memory)

Parent
Process

Child
Process

Child
Process

● ● ●

② E&B

field (MPI)

GPU
Process

● ● ● GPU
Process

③ field & particle data (OpenACC offloading)

GPU
Process

● ● ● GPU
Process

Node 1

Node 2

• Using GPU profiler, it is found that the data transfer time is < 0.1s for
GPU offloading, which is ignorable compared to GPU computation time
with subcycles.

10

Procedure and data flow in a particle pushing step

Parent
Process

Child
Process

Child
Process

● ● ●

⑥ particle data (shared memory)

Parent
Process

Child
Process

Child
Process

● ● ●

⑤ particle

data (MPI)

GPU
Process

● ● ● GPU
Process

GPU
Process

● ● ● GPU
Process

Node 1

Node 2

④ particle data (OpenACC offloading)

• Using GPU profiler, it is found that the data transfer time is < 0.1s for
GPU offloading, which is ignorable compared to GPU computation time
with subcycles.

10

Subcycles of particle pushing within MHD timestep

• Currently M3D-C1 can use timestep of tens of τA to simulate long-term
phenomena, with the help of the advanced semi-implicit algorithm for
velocity advance.

• This is an improvement over the M3D code, which typically use much
smaller timestep.

• For particle pushing we use explicit RK4, thus the timestep is limited by
particle speed.

• Here we use subcycles for particle pushing, which means that we push
particle multiple times between two MHD timesteps.

• GPU-CPU communications are only needed at the beginning and end of
subcycles.

• Fields are fixed during subcycles. This can be improved by utilizing
information of time derivative of field.

11

Performance benchmark of particle pushing on GPU and CPU

• The benchmark was done using the
initial version of code, which only
runs on one GPU. We compare it with
OpenMP version running on Traverse
CPU with 128 threads.

• According to the results, in current
version (supporting multiple GPUs),
we should get >16× speedup from
GPU acceleration.

• Most of the time for particle pushing
is spent in calculating the value of
basis functions at each particle
location, which requires a calculation
of 5th order polynomials.

OpenMP OpenACC
0

5

10

15

20
16.06

3.72Ti
m
e
(s
)

12

Linear subcycles in nonlinear MHD simulations

• In a nonlinear run of current version of code, most of the computation
time is spent in matrix term calculation of MHD equations, especially
evaluating the semi-implicit terms.

• To simulate the Alfvén wave excitation, we have to use MHD timesteps
smaller than mode period, like 1τA or less.

• To save time in matrix calculation, we
keep using the same matrix for MHD
evolution for several timesteps (∼ 30),
like in a linear run, and then recalculate
the matrix and do the matrix
factorization.

• The particle current terms or pressure
terms are added to equations as
external momentum source, thus the
wave-particle interaction is well treated.

• However, the wave-wave interaction is
absent.

• The method can lead to numerical
instabilities near the mode saturation. It
is better to introduce self-adaptive
timesteps.

matrix
calculation

128s

solve

37sparticle

11sother
12s

13

Outline

1. Implementation of kinetic physics in M3D-C1 framework

2. GPU acceleration of particle pushing

3. Simulation results and benchmark with other codes

4. Summary

Fishbone simulation result agrees with M3D-K and NIMROD

R/a = 2.8, βtotal = 0.08, q0 = 0.6, qa = 2.5
ρ̂h = v0/(Ωha) = 0.0125, v0/vA = 4

• These results are obtained using pressure coupling scheme used in
M3D-K and NIMROD. With current coupling, the growth rate increase
significantly with βh

G.Y. Fu, W. Park, H.R. Strauss, J. Breslau, J. Chen, S. Jardin, and L.E. Sugiyama, Phys. Plasmas 13, 052517 (2006).
C.C. Kim and the NIMROD Team, Phys. Plasmas 15, 072507 (2008).

14

TAE linear simulation without and with FLR effects

• This is an ITPA collaborative effort to compare different codes and
physical model. Several hybrid MHD, gyrokinetic and gyrofluid codes
are benchmarked.
R/a = 10, β ≈ 0.2%, q = 1.71+ 0.16(r/a)2

nf = c3 exp
(
− c2

c1
tanh

√
s−0.5
c2

)

0 200 400 600 800
T

f
/ keV

0

10

20

30

40

50

60

γ/
10

3
s-1

CAS3D-K (ZOW)
GYGLES (ZLR)
AE3D-K (ZLR)
NOVA-K (ZLR)
HMGC (ZLR)
MEGA (ZLR)
CKA-EUTERPE (ZLR)
VENUS (ZLR)
ORB5 (ZLR)

M3D-C1 (ZLR)

0 200 400 600 800
T

f
/ keV

0

10

20

30

γ/
10

3
s-1

CAS3D-K (ZOW)

GYGLES (FLR)

CKA-EUTERPE (FLR)

MEGA (FLR)

NOVA-K (FLR)

LIGKA (FLR)
EUTERPE (FLR)

ORB5 (FLR)

VENUS (FLR)
TAEFL (FLR)

M3D-C1 (FLR)

• In nonlinear simulations, an energetic particle driven acoustic-like
mode is observed with growth rate of the same order.

A. Könies, et al., Nucl. Fusion 58, 126027 (2018). 15

Simulation of RSAE driven in DIII-D tokamak

• Recently several MHD and gyrokinetic codes are employed to study the
linear growth of reversed shear Alfvén eigenmode (RSAE) using DIII-D
experimental parameters.

R/a = 2.5, qmin = 2.94, B0 = 2T, n0 = 3.29×1013cm−3, Te = 1.689keV
nf = 1.95× 1012cm−3, Tf = 24keV
• Including FLR effects leads to
smaller mode growth rate,
especially for high-k modes.

• We got almost the same results
using pressure coupling or
current coupling, meaning that
the parallel dynamics are not
important.

• Compressional effects (δB‖) are
not important.

M3D-C1 FLR
M3D-C1 ZLR

S. Taimourzadeh et al., Nucl. Fusion 59, 066006 (2019). 16

Energy conservation test

• We study the energy conservation in the nonlinear simulation of RSAE
in DIII-D.

• Both the kinetic and magnetic energy are calculated using the
perturbed field only, to reduce the noise coming from the equilibrium
fields.

• Pressure is chosen to be very
small.

• In energetic particle energy
calculation, the contribution
from full-f current is subtracted
to reduce noise (Belova (1997)) 600 800 1000 1200

t (A)

10 5
10 7
10 9

10 11
10 13
10 150
10 15
10 13
10 11
10 9
10 7
10 5

En
er

gy

KE+ME
Epar

KE+ME+Epar

• The total energy change is within 10% of MHD energy increase during
linear growing stage, but in the saturation stage this error is
significantly larger.

• We think this is caused by the phase mixing related to continuum damping
of RSAE, since high-k modes can be excited.

E.V. Belova, R.E. Denton, and A.A. Chan, J. Comp. Phys. 136, 324 (1997). 17

Outline

1. Implementation of kinetic physics in M3D-C1 framework

2. GPU acceleration of particle pushing

3. Simulation results and benchmark with other codes

4. Summary

Summary

• A new kinetic module coupled to M3D-C1 has been developed, which
utilizes GPU for particle pushing, and can do both pressure coupling
and current coupling.

• Linear benchmarks with other MHD and gyrokinetic codes are
conducted, and good agreements are achieved.

• The test of energy conservation is also successful in the linear stage.
• Future work

• Continue working on nonlinear simulation of RSAE and benchmark with
MEGA

• Implement a full-orbit scheme for particle simulation, and use it to
simulate high frequency Alfven waves like GAE and CAE.

18

Parallel pressure term in M3D-C1

∇ · (αBB) = B · ∇(αB)

= BB · ∇α+ αB · ∇B

= BB · ∇α+
1
2α∇B

2 − αB×∇× B

19

Parallel pressure term in M3D-C1

B = ∇ψ ×∇φ−∇⊥f ′ + F∇φ

ν∇ϕ · ∇ × R2∇ · (αBB) = R2∇⊥ν ×∇ϕ · ∇ · (αBB)

= [α, ψ](ν, ψ) + α′R−2F(ν, ψ)− (α, f ′)(ν, ψ)

+ R2[α, ψ][ν, f ′] + α′F[ν, f ′]− (α, f ′)R2[ν, f ′]

+
1
2αR

2[B2, ν]

+ α∆∗ψ[ν, ψ]− α∆∗ψ(ν, f ′) + αF[ν, F∗] + αFR−2(ν, ψ′)

20

Parallel pressure term in M3D-C1

νR2∇ϕ · ∇ · (αBB) = νF[α, ψ] + νFFα′R−2 − νF(f ′, α)

+ ναBB′

− αν[ψ, F∗]− αν
1
R2 (ψ,ψ

′)− αν(f ′, F∗)− αν[ψ′, f ′]

21

Parallel pressure term in M3D-C1

ν∇⊥ ·
[
R−2∇ · (αBB)

]
= −∇⊥ν ·

[
R−2∇ · (αBB)

]
= −R−2[α, ψ][ν, ψ]− α′R−4F[ν, ψ] + (α, f ′)R−2[ν, ψ]

+ (ν, f ′)R−2[α, ψ] + (ν, f ′)R−4α′F − (ν, f ′)R−2(α, f ′)

− 1
2αR

−2(ν,B2))

+ R−4α∆∗ψ(ν, ψ) + R−2α∆∗ψ[ν, f ′]

+ FR−4α(ν, F∗) + FR−4α[ψ′, ν]

22

Parallel pressure term in M3D-C1

∇p =
BB
B2 · ∇p+ (1− BB

B2)∇p

∇ · (pB2 BB) = B · ∇(
p
B2 B)

= BB · ∇ p
B2 +

p
B2 B · ∇B

= BB · ∇ p
B2 +

1
2
p
B2∇B

2 − p
B2 B×∇× B

=

(
BB
B2 · ∇p+ BBp · ∇ 1

B2 − 1
2pBB · ∇ 1

B2

)
+

(
− 1
2p(B

2 − BB) · ∇ 1
B2 +

p
B2 J× B

)

23

	Implementation of kinetic physics in M3D-C1 framework
	GPU acceleration of particle pushing
	Simulation results and benchmark with other codes
	Summary

