C – pellet disruption mitigation modeling with M3D-C1

C F Clauser¹, S C Jardin¹, B C Lyons², N M Ferraro¹ ¹Princeton Plasma Physics Laboratory, Princeton NJ ²General Atomics, San Diego CA 06/10/2020

CTTS Talk Series

C – pellet disruption mitigation modeling with M3D-C1

Outline:

- Motivation
- C ablation model
- Validation/comparison (ASDEX-U)
- Modelling pellets in M3D-C1
- NSTX simulations
 - Convergence study
- Summary and future work

C – pellet disruption mitigation modeling with M3D-C1

5

Outline:

- Motivation
- C ablation model
- Validation/comparison (ASDEX-U)
- Modelling pellets in M3D-C1
- NSTX simulations
 - Convergence study
- Summary and future work

Motivation

- An Electromagnetic Pellet Injector (EPI) has been developed *
- EPI would offer advantages for ITER
 - Very fast response time (2-3 ms)
 - Speeds up to 1 km/s
- Proposal to test on NSTX-U.

- We have started single C-pellets injection simulations using M3D-C1
 - C-ablation model has been incorporated.
 - Simulations on NSTX-U are being conducted:
 - Convergence study
 - TQ quench sensitivity on modelling parameters
 - Understanding the physics involved

C – pellet disruption mitigation modeling with M3D-C1

5

Outline:

- Motivation
- C ablation model
- Validation/comparison (ASDEX-U)
- Modelling pellets in M3D-C1
- NSTX simulations
 - Convergence study
- Summary and future work

C ablation model

9

- Sergeev et al., Plasma Phys. Rep. 32 (2006) 363
- Sergeev et al., ECA 18B (1994) 1364
- Kuteev et al., Sov. J. Plasma Phys. 10 (1984) 675

Based on a Neutral Gas Shielding Model (NGS)

- Key quantity is $\delta = q_p/q_0 \rightarrow$ shielding factor
- Hydrogen pellets (strong shielding)
 - Low sublimation energy ε
 - $\delta \ll 1$: Most of the plasma heat flux is absorbed by the neutral pellet cloud
- Refractory pellets (weak shielding)
 - High sublimation energy
 - $\delta \ge 0.8$: Most of the plasma heat flux reaches the pellet surface
 - Delayed time at which evaporation begins

 $q_p \rightarrow$ heat flux reaching the pellet surface $q_0 \rightarrow$ heat flux from the surrounding plasma

C ablation model

For both limits ($\delta \rightarrow 0$ and $\delta \rightarrow 1$) analytical expressions for the ablation rate \dot{N} is derived

However, C pellet can have an intermediate shielding

- There is no analytical model for this regime
- They propose a standard interpolation:

 $\dot{N} = \frac{\dot{N}_0 \ \dot{N}_1}{\dot{N}_0 + \dot{N}_1}$

Expression we have implemented in M3D-C¹

Model were tested with experimental data

8

Ablation rate model was tested in several discharges obtaining good agreement No MHD evolution

It was also tested for different pellet materials

M3D-C1 implementation also tested

We tested our implementation in an AUG-#3948-like plasma (no G-EQDSK available)

Agreement is very good.

Main modeling features in M3D-C1:

- Pellet neutral cloud is prescribed
- Plasma evolves self-consistently in time

C. F. Clauser - CTTS

Modelling pellets in M3D-C1

The ablated material (given by \dot{N}) is weighted by the neutral cloud distribution Spatial distribution for the neutral cloud is prescribed:

$$S = \frac{1}{(2\pi)^{3/2} V_p^2 V_t} \exp\left[-\frac{\left(R - R_p\right)^2 + \left(Z - Z_p\right)^2}{2 V_p^2} - \frac{RR_p \left(1 - \cos(\varphi - \varphi_p)\right)}{V_t^2}\right]$$

- Thus, The size of the neutral cloud has to be specified (Vp, Vt). Limitations arise due to mesh size and number of toroidal planes.
- Smaller cloud sizes require more toroidal planes and smaller time steps.

Example: In NSTX-U $R_{out} \sim 1.4$ m. Thus, the minimum toroidal neutral cloud size scales roughly as

# tor. Planes	V _t
8	\lesssim 1.00 m
16	≲ <mark>0.50 m</mark>
32	≲ 0.25 m

Modelling pellets in M3D-C1

Plasma evolves self-consistently in time

- B. Lyons, C. Kim, Y. Liu, N. Ferraro, S. Jardin, J. McClenaghan, P. Parks, L. Lao, Plasma Phys. and Contr. Fusion **61** 064001 (2019)
- N.M. Ferraro, B. C. Lyons, C.C. Kim, Y.Q. Liu, and S.C. Jardin, Nucl. Fusion 59 016001 (2019)
- Single fluid equations (same velocity, \mathbf{v} , for all species (e, i, Z^j))
- Continuity equation for each ion species

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{v}) = D \nabla^2 n_i + \sigma_i \quad \text{(same for } n_Z^j\text{)}$$

- Electron density is defined to satisfy quasi-neutrality
- σ_Z^J is calculated using KPRAD module (ionization, recombination)
- All ionized impurities (Z^j) have the same temperature as the main ion species, T_i
- Two temperature equations (∑ions and e⁻) also include the radiation losses calculated by KPRAD

C – pellet disruption mitigation modeling with M3D-C1

5

Outline:

- Motivation
- C ablation model
- Validation/comparison (ASDEX-U)
- Modelling pellets in M3D-C1
- NSTX simulations
 - Convergence study
- Summary and future work

NSTX-U C-pellet Disruption Mitigation Study

We studied single C-pellet injection in NSTX-U (#139536) to support EPI proposal

We started from equilibrium (g-eqdsk provided) and injected a C-pellet radially at the midplane

NSTX-U C-pellet Disruption Mitigation Study

• We carried out a scan over different parameters

- Modelling & other parameters
 - Transport and other parameters (density diffusion, viscosity)
 - Pellet neutral cloud size (V_p & V_t)
- Pellet parameters
 - Pellet radial velocity, v_r
 - Pellet mass density, ho_Z
 - Pellet radius, r_p (experimental limit for NSTX-U would be 1 mm. We fixed at this value)

We need first a clear picture on modelling parameters before moving to scan pellet parameters

In addition, scanning on different parameters can help clarifying the physics behind this process

NSTX-U: Scanning over modelling parameters

5

Effect of viscosity (μ , μ_c) and density diffusion (denm)

The orange case will be our reference case

- Having larger diffusion coefficients allow bigger time steps (0.5 blue and 0.2-0.25 orange)
- Central temperature can show some differences, but global quantities are similar.
- We can show that reducing even more this quantities does not produce further differences (in progress)

NSTX-U: Scanning over modelling parameters

5)

16

Effect parallel thermal conductivity

Parameter	value
v_p	1000 m/s
V_p	$50r_p$ (~ 5 cm)
κ_{\perp}	$2 \cdot 10^{-6}$
μ/μ_c	$5 \cdot 10^{-5} / 5 \cdot 10^{-4}$

- κ_{\parallel} has a strong role on pellet related quantities
- From the comparison with the AUG discharge, $\kappa_{\parallel} = 1$ seems to be a fear value
- Larger κ_{\parallel} also requires smaller time steps
- In addition, very large κ_{\parallel} values can lead to anomalous perpendicular heat flux (if the mesh is not fine enough) *
- In progress: explore larger κ_{\parallel}

NSTX-U: Scanning over modelling parameters

Effect of pellet neutral cloud size

Parameter	value	Obs
v_p	1000 m/s	
Vp	$50r_p$ (~ 5 cm)	Case 0.5(*) has $25r_p$
$\kappa_{\parallel}/\kappa_{\perp}$	$\sim 10^{6}$	

- Case 0.25(*) has a bit larger viscosity.
- Almost everything looks similar, except the radiation for $V_t = 1.00$ (a bit larger).
- Thus, the reference case is taken to be $V_t = 0.50$ (16 planes) and $V_p = 50r_p$.

All the previous cases show an incomplete TQ

Case	# planes	Smallest dt needed
1.0	12	0.15
0.50	16	0.20
0.5(*)	16	0.15
0.35	16	0.05
0.25(*)	32	< 0.1
0.15	32	< 0.02

NSTX-U: Scanning over pellet parameters

Parameter	value
v_p	1000 m/s
V_t/V_p	0.5 / 50r _p
$\kappa_{\parallel}/\kappa_{\perp}$	$\sim 10^{6}$

Results are almost identical

Pellet radius is different because of the different pellet densities but the same ablation rate.

NSTX-U: Scanning over pellet parameters

Effect of different pellet velocities

- The reference case (orange curve) is not enough to produce a complete TQ since β dropped from 2.5% to 1.5%
- We ran a cases with pellet velocities of 500 m/s and 300 m/s.
- In this case figures are shown as a function of the radial position (not time as previous cases).

• β drop is very sensitive to the pellet velocity

NSTX-U: Understanding the TQ

Central temperature as a function of time

• In the next slides we will show Poincare plots and temperature distribution at all these timeslices.

6/11/20

21

6/11/20

C. F. Clauser - CTTS

22

C – pellet disruption mitigation modeling with M3D-C1

5

Outline:

- Motivation
- C ablation model
- Validation/comparison (ASDEX-U)
- Modelling pellets in M3D-C1
- NSTX simulations
 - Convergence study
- Summary and future work

NSTX-U: Summary

- We incorporated a C-ablation model in M3D-C1
 - The model was tested in an AUG discharge in which data exists getting a very good agreement
- We have carried out a convergence study for an NSTX-U discharge
 - We evaluated the sensitivity of different parameters
 - Parallel heat flux and pellet velocity are the most important parameters to produce a TQ
 - We showed that central temperature cools down before the pellet reaches it

Still in progress

- Larger κ_{\parallel} (to the mesh limit)
- Explain the central cooling mechanism
 - We are analyzing each term in the temperature equation separately
- Compute the Current Quench for selected case(s)

Moving forward (*)

- Shell pellet. Start ablating inside the q=2
 - Our equilibrium has $q \gtrsim 2$ at the core
 - Search for a new equilibrium with q < 2
- Explore other pellet materials: B, Boron Nitride, Be, W.
- Simulate an ITER pellet injection

KPRAD Coupling in M3D-C1

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{v}) = D \nabla^2 n_i + \sigma_i \quad (\text{idem } n_Z^{(j)})$$

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi - \overline{\omega} \mathbf{v} \qquad \rho = m_i n_i + \sum_{j=1}^{Z} m_Z n_Z^{(j)} \quad \overline{\omega} = m_i \sigma_i + \sum_{j=1}^{Z} m_Z \sigma_Z^{(j)}$$
$$\mathbf{E} = \eta \mathbf{J} - \mathbf{v} \times \mathbf{B}$$

$$n_e \left[\frac{\partial T_e}{\partial t} + \mathbf{v} \cdot \nabla T_e + (\Gamma - 1)T_e \nabla \cdot \mathbf{v} \right] + T_e (D \nabla^2 n_e + \sigma_e) = (\Gamma - 1)[\eta \mathbf{J}^2 - \nabla \cdot \mathbf{q}_e + Q_e + Q_\Delta - \Pi_e; \nabla \mathbf{v}]$$

$$n_* \left[\frac{\partial T_i}{\partial t} + \mathbf{v} \cdot \nabla T_i + (\Gamma - 1)T_i \nabla \cdot \mathbf{v} \right] + T_i (D \nabla^2 n_* + \sigma_*) = (\Gamma - 1) \left[-\nabla \cdot \mathbf{q}_* + Q_* - Q_\Delta - \Pi_* : \nabla \mathbf{v} + \frac{1}{2} \overline{\omega} v^2 \right]$$

 $Q_{e,*}$ is the radiation source. It includes line radiation, Bremsstrahlung, recombination.

Large density diffusion can increase the central temperature at the beginning

5

At the **beginning** and at the **center**, **w**e have

- $\sigma_e = 0$ (no sources)
- V=0 (no rotation)
- heat flux is small (equil) and radiation should be small: q=0, Q=0
- Ohmic heating should be small: \eta J = 0

So, initially at the plasma center the equations reduces to

$$\frac{\partial n_e}{\partial t} = \mathbf{D} \nabla^2 n_e$$
$$n_e \left[\frac{\partial T_e}{\partial t} \right] + T_e (\mathbf{D} \nabla^2 n_e) = 0$$

 $\nabla^2 n_e$ is basically negative: that is why the density decreases, but that is also why the temperature increases

NSTX-U: Scanning over modelling & other parameters

Effect of viscosity (μ , μ_c) and density diffusion (denm)

- Large density diffusion increases the central temperature
- Having higher diffusion coefficients allow larger time steps
- But also the central temperature can differ about 150 eV after the temperature fall

Orange case will be our reference case.

 μ/μ_c /denm $5 \cdot 10^{-5}/5 \cdot 10^{-4}/2 \cdot 10^{-4}$

Case	Smallest dt needed
green	1.00
red	0.20
violet	0.30
orange	0.10
blue	0.02

Case v_p =300 m/s

