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Forced Reconnection is used to generate seed island for 
numerical NTM studies

• Modified Rutherford equation models NTM 
evolution:

• NTMs require seed island for growth

• Transients seed NTMs in experiments

• Simulations require method of generating seed island
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External magnetic perturbations generate seed Island

• Perturbation are generated from planar coil array 

• Coil configuration is optimized to preferentially 

excite 2/1 vacuum response

• Perturbations are applied as a slowly varying pulse

𝐵- = 𝐵./0×Ψ 𝑡 ×exp 𝑖Ω𝑡

• Perturbations are modulated with plasma rotation to reduce screening
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Heuristic Closures Model the Neoclassical Stresses1
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• Closures model dominant 

neoclassical effects

• Bootstrap current drive

• Poloidal ion flow damping

• Polarization current enhancement

• Closures use quantities that are 

readily available in simulations

1T. Gianakon et al., PoP 9 (2002)



Fourier amplitude of 𝐽𝐵! is a proxy for the island width2
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• Magnetic island width scales with the resonant perturbed flux:

2M. J. Schaffer et al., NF 48 (2008) 

• Perturbed flux is related to the radial component of the magnetic field:

• Poloidal field line integration calculates the cos and sin transforms:
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Simulations are based on a DIII-D NTM seeding study3

• Simulations use ITER baseline 
scenario discharge 174446

• ELM at 3396 ms triggers a 2/1 NTM

• Mode grows to large amplitude and 
locks in ~100ms

• High resolution measurements enable 
high fidelity kinetic reconstruction

8
3R. La Haye, B. Wilcox, C. Chrystal, et al.



Simulations are initialized with kinetic reconstruction at 
3390ms, prior to the 2/1 growth

Lundquist number 2.5x106

Prandtl number 23
⁄𝜒∥ 𝜒: 108

𝜇. 8x105 [s-1]
𝜇8 103 [s-1]

⁄𝜇. 𝜈.8 + 𝜇. 0.55
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• Reconstructions fix q0>1 to avoid 1/1
• Parameters are within a factor of 5 of 

experiment at 2/1 surface

Simulation Parameters at 2/1 Surface



Simulations include rotation inferred from measurements

• Experimental rotation profiles are 
based on CER measurements

• Flow shear stabilizes pedestal peeling-
ballooning modes

• Planned locking studies require a 
realistic flow profile
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Applied 1ms pulse excites a broad n=1 spectrum
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• 2/1 response is strongly screened



2/1 island grows following applied magnetic perturbation
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Pulse

Slow Growth

Increased Growth



3/1 mode is dominant during the initial decay
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2/1 mode is dominant n=1 mode during slow growth
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• Resonant modes are destabilized in a 
sequence
• 6/5, 5/4, 4/3, 3/2, 2/1

• Core modes located in region with 
weak magnetic shear 

• Modes saturate and decay when the 
next mode in the sequence grows to 
large amplitude

• Increased growth of the 2/1 mode 
occurs when the 3/2 mode reaches 
large amplitude

Core modes destabilized at 4ms



Equilibrium Flux Surfaces
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Applied perturbation destroys edge flux surfaces, but core 
surfaces intact
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Edge surfaces heal and 2/1 island persists following the pulse
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Inner stochastic region forms as core modes grow
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Stochastic region expands outwards as lower order modes 
grow to large amplitude
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Degradation of core surfaces persists throughout the 
simulations
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Growth of cores modes results in a steeping of the pressure 
profile outside the stochastic region
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• Temperature flattening across the 
stochastic region steepens pressure 
gradient outside the region

• The pressure gradient propagates 
outwards as region grows, eventually 
destabilizing the next mode in the 
sequence

• Pressure gradient outside island drives 
bootstrap destabilization



A similar chain of modes is observed experimentally 
(on longer time scales)
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• 4/3 mode at 2000ms (green)

• 3/2 mode appears later around 
2250ms (yellow)

• 4/3 mode disappears around 3100ms 
after 3/2 mode reaches large 
amplitude

• 2/1 mode persists at 3400ms (red)

Image curtesy R. La Haye



Conclusions
• Demonstrate ability to excite NTM using an external perturbation in a classical 

tearing mode stable case

• Rich nonlinear coupling leads to destabilization of 2/1 mode from an external 
perturbation

• Growth of core resonant modes leads to a chain of events
• Steeping pressure profile inside 2/1 surface
• Enhances bootstrap current drive 
• Increased 2/1 NTM growth
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Future Work: Can we produce a saturated 2/1 island at 
modest amplitude?
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• Goal: Study locking of 2/1 NTM 
due to error fields and resistive 
wall

• Reducing 𝜇. decreases the 
bootstrap current drive
• Smaller saturated islands

• Here reducing 𝜇. by ½ at 20ms 
cause core modes to decay



Discussion
• Relate work to continuum kinetic closures?

• Run DKE calculation of ∇ ⋅ Π from static MHD perturbation and compare with 
closures
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Applied perturbation destroys edge flux surfaces, but core 
surfaces intact
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Degradation of core surfaces persists throughout the 
simulations
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Applied 1ms pulse excites a broad n=1 spectrum
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• 2/1 response is strongly screened



3/1 mode is dominant during the initial decay
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2/1 mode is dominant n=1 mode during slow growth
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