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KORC is coupled to M3D-C1 and NIMROD using Fusion-1O

 Work was part of DOE Theory Milestones for SCREAM SciDAC in FY21

+ Interpolations used for RE distribution initialization, full orbit evolution, guiding
center evolution, and Coulomb collision operator evaluation

- B,VB,{y, E,n,, Te, n;, iy Presently interpolated for M3D-C
« Can use all the RE physics models in KORC
« Built all functionality from initial development of Nate Ferraro and Mark Cianciosa

- B, E,n, presently interpolated for NIMROD (NIMUW branch)

« Can only use full orbit evolution
« Functionality developed by Brian Cornille

* Fields and field derivatives and plasma and impurity profiles interpolated from
dumpfiles using input files

— Reinitialize interpolants for each dumpfile in order

e Search routine that locates logical coordinate of physical location is significant
driver of computational time

- Helped by holding onto “hint” of where a particle is located
— Present routine is not vectorized
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Interpolation with native resolution yields higher fidelity
fields for particle tracking

* Poincare sections clearly show difference between PSPLINE, NIMFL,
and NIMFIO interpolation for island chains

— Using 50G m = 3 RMP with MST equilibrium to be discussed

— PSPLINE/NIMFIO interpolation at Poincaré section is different order than NIMFL
algorithm

NIMFIO: dl = 0.1m
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Resonant magnetic perturbations can deconfine REs in
MST tokamak discharges - s RMP
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» REs generated by electric field
acceleration in low density
operation

— Munaretto et al., Nucl. Fusion (2020)

- Observed via bremsstrahlung X-rays
with FXR and HXR array diagnhostics

« m = 1,2,3 modes are internally ‘M .
resonant i 5 | e s
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— m = 3 RMPs deconfine REs, m =1
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sawtooth activity with stochastic ST o
edge e e
— Carl just discussed this is depth Munaretto et al., Nucl. Fusion (2020),
Cornille et al., APS (2021)
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KORC calculations with time-dependent NIMROD m = 3
RMPs yield significant but not complete deconfinement

* Initial RE beams are monoenergic E = 10keV, monopitch n = 170°, and
uniformly distributed

* Rapid deconfinement of REs initialized in stochastic edge for m = 3 RMP case
— Few additional losses at each reconnection event
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Majority of deconfined REs lost from edge, core REs
redistributed by reconnection events
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* Discrepancy with full deconfinement observed in experiment
— Possible effect of RMP rise time and sidebands

— Location of RE generation not captured by HXR

« New results using multi-energy soft x-ray detector (L. F. Delgado-Aparicio, PPPL) more accurately
capture RE generation and early transport
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KORC is modeling RE transport in stochastic magnetic
fields from 3D extended-MHD simulations

« M3D-C' simulation of Ne pellet into DIII-D #160606
- Experiment doesn’t result in a post-disruption RE beam

« KORC guiding center orbits with electric field acceleration,
Coulomb collisions, RE radiation

— Initial RE beams are monoenergic E = 10MeV, monopitch n = 10°,
and uniformly distributed within LCFS

» All REs are deconfined during the TQ on a faster time scale
than the thermal energy loss
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REs are increasingly deconfined as MHD mode and

SIIIOChqsII.iCiII.y grows t=1.50ms t=1.75ms t=2.00ms
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Collisions have a small, but finite effect on the RE
distribution evolution

Pitch angle Momentum
 Collisional time scales ~coamsenms e
are much longerthan . HE . f o, EE
deconfinement (~1ms) £ AN 5
— Pitch angle scattering B - S
Tp = 140ms S .
— Slowing down 15 = 55ms ’ " J\
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KORC coupling with M3D-C1 and NIMROD future work

« Early Career Award project with postdoc Omar Lopez
— “Hybrid Kinetic-Fluid Modeling of Tokamak Disruption Mitigation”

 Having KORC coupled in memory with NIMROD will enable
more efficient/accurate tracer RE calculations

- Extending Val 1zzo's work by including collisional effects

* Look at power deposition and PFC heating from Liv et al. PPCF
(2021) of RE mitigation with low-Z impurities

 Study localization of Dreicer and avalanche RE growth in
simulations of disruption mitigation with different impurities
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KORC coupling with MARS-F studies deconfinement due
to perturbations from unstable MHD modes

MARS-F
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MARS-F 3D perturbation fields scaled to n=1

experimental signals on DIII-D final loss events

» Toroidal array of B,
maghnetic pickup coils

» Maximum physical field 5B,
is larger than B

%

fit o n=1

- Located at white plus in left
column plots

- 636.3 G for low-Z
—- 28.76 G for high-Z

o Complex norm of MARS-F
B, perturbation field is

|5Bz| —

JBzB;

- Scale complex norm to
experimental fit
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KORC full orbit simulations with MARS-F 3D fields show
qualitative agreement with experimental results

 Initial RE beam is monoenergic E = 10MeV, monopitch n = 170°, and uniformly distributed within LCFS

« Two stage KORC simulations with MARS-F 3D fields
- Evolve orbits for 100us in equilibrium fields where unconfined REs exit the simulation domain and phase mixing occurs
— Reinitialize simulation including 8B fields and evolve for 100us

 REs are deconfined on DIlI-D center post
- Inner wall limiter modeled as 42-sided polygon with circumradius of R. = 1.016m
— Al REs lost for low-Z injection over a larger wetted area compared to high-Z injection
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KORC coupling with MARS-F future work

« Ongoing ITPA collaboration to understand energy deposition
during final loss events

— Passing KORC data to ITER organization to run through
GEANT4/MEMQOS-U analysis of energy deposition/heating

— Similar analysis for JET pulses and DINA-ITER simulations

 Enable interpolation using MARS-F field representation
(toroidal/poloidal Fourier, radial finite difference with packed
mesh)

— Full orbit vs guiding center model comparisons
— Deconfinement for different unstable MHD modes
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Experiments indicate that REs interact with whistler waves

150 g

 DIlI-D Frontier science program

5 " DII-D 171087
140 [ P

 Toroidally separated magnetic pick- 5 130
up loops measure fluctuating B =
- In the ~100MHz range
— Multiple frequency bands

— Correlated with hard x-rays, non-thermall k
ECE, visible synchrotfron

 Wave-particle resonance of REs with
whistler wave
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KORC coupling with AORSA studies interaction of REs with

whistler waves . W -
[[aa) '
E 0.1
« AORSA yields full solutions to e :
inhomogeneous wave equation =
- MHD equations reduced to 3D eigenmode &
problem with external antenna currents

- Calculates complex magnetic and

electric fields .
- Wave amplitudes are not matched to P N
experiment, need to scale % .
. Modeling DIII-D #171089 at 5450ms 5 ”
— EFIT axisymmetric magnetic reconstruction g
« No DC toroidal electric field rote 2 1ois 2 ’
Ez1(V/m)

— 200MHz, n = 35 AORSA calculations drive Exa(V/m)
whistler wave with modeled antenna

« Globally varying k;
- 6§(¢, t) = Re{5§AORSA} COS((Ut + Tl(p)
+Im{5§AORSA} sin(wt + ng)
i PlOTS fOI’ ¢ =t=0 1 15 2 1 15 2
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Preliminary results indicate significant resonant energy
evolution and pitch angle scattering

. :-lgtgcszl RE beam is monoenergic E = 15MeV° and uniformly distributed within

— Using estimate of k; = 38.5m™! yields resonant energy
— Scale AORSA fields by 10* - 6B/By ~10%
- Look at monopitch n = 170°,10°

Full orbit KORC calculations exhibit complex dynamics of Ipltc:h angle scattering
and resonant interaction of REs with globally varying whistler wave elgenmode
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