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Next gen computing: SciDAC codes need to exploit GPUs

● Perlmutter (NERSC), Frontier (OLCF) and Aurora (ALCF) contain GPUs
○ Three different hardware vendors (Nvidia, AMD, Intel)
○ Three different software eco-systems

● Dust yet to settle on unified programming paradigm
○ CUDA, HIP, SYCL, OpenCL, OpenACC, OpenMP 5, language standards
○ We’ve explored OpenACC for NIMROD – support by nvhpc / gcc
○ May switch to OpenMP 5 or language standards as dust settles
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Effort splits NIMROD code into infrastructure and physics repos

● Physics: anything with units
● Infrastructure: FE evaluation & integration, linear algebra, parallel decomp, 

FFTs, inverse mapping, etc.
● Infrastructure repo now open-source, open-access

○ See https://gitlab.com/NIMRODteam/nimrod-abstract
○ Allows access by ASCR/computing facility partners and compiler teams
○ Useful for hackathons and diagnosing performance and compiler issues

● Using gitlab enables modern software tools
○ Code review
○ Issue tracking
○ Continuous integration testing
○ Code coverage reports
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Infrastructure repo close to maturity

● Relies on modern Fortran abstract types to enable flexibility
○ Define interface at abstract (virtual) level
○ Now: working on version with real types 

● Investigating API on GPU before expanding concrete base classes 
● Done: I/O, seams, MPI with mpi_f08, timing, FEM types, linear algebra, 

Dirichlet boundary conditions, regularity
● Remaining big tasks: preconditioning, FFTs, surface integrals
● Next: report on progress on GPU by overviewing example application
● Example application: solve time-dependent Laplace equation in a periodic box

Thanks to the full GPU hackathon team!

For the openACC material here, I’d specifically like to thank Eric Howell, Brian 
Cornille, Torrin Bechtel, Robbie Searles (Nvidia) and Vassillios Mewes (OLCF)
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Example overview

● All module import ABSTRACT 
base types at the example level
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Example overview

● All data types are only know at 
the abstract level

● Storage arrays allow different 
concrete instantiations for 
different blocks

● Timer and parallel types require 
initialization of singleton objects

● Example takes command line 
input (no namelist)
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Example overview

● Mesh and block decomposition 
set by initialization

● “dump_read” also initializes 
parallel block decomposition

● Blocks govern FEM integration 
and setting quadrature rules 
and weights mirrors 
non-abstract code

● This structure allows for natural 
separate of blocks (e.g. CK type 
bound to a CK block with CK 
integration rules)
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Example overview

● Minor penalty for not binding fields to 
blocks: one extra copy after read

● #ifdefs based on compiler demonstrate 
difficulty with modern Fortran

● Vectors and matrices are initialized from 
FE field

● Each field (or combination of fields) 
needs to know how to map to 
appropriate linear algebra structures

○ See create_*_for_fem 
● Basis functions are precomputed based 

on FE field
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Example overview

● Time step loop: 
○ update quadrature storage
○ Create matrix/RHS
○ Call iterative solver
○ Use RHS norm (inf_norm in this 

case) to test solution
○ Check convergence
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Example overview

● After time step loop, we test solution

Wait! Where’s the GPU stuff?!?
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Example overview

● Physics application is not completely 
exempt from being GPU aware, 
openACC statements required in 
integrand routines

● Parallel clause create GPU kernel
● present/copyin clauses manage data 

movement from host to device
● Structure of acc loops follow pre-set 

pattern
● With full time step loop on device, 

minimal copyin statements will be 
needed (more on this later)
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Example overview

● For completeness, here’s the RHS 
routine

● It is pretty similar, but quadrature point 
data from field is used

● Majority of OpenACC code in 
infrastructure repo. 

● Management of data locality is key 
(next slide)
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Device data management 

● Unstructured data blocks:
○ persistent data on GPU
○ “!$acc enter data create” 
○ “!$acc exit data delete”

● Structured data blocks:
○ GPU data in local scope
○ “!$acc data create”
○ “!$acc end data”
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GPU port progress

● Integrand, vector assemble kernels on GPU
● Left to port: matvec, qp_update, matrix assemble
● Testing on Ascent at ORNL
● Kernels on 1x V100 GPU comparable or 2x faster than 32 POWER9 cores

○ CPU performance measured with timer
○ GPU performance measured with Nsight Compute
○ 64x64 FE mesh with bi-quintic basis functions

● But there’s 6x GPU/node but only 42 POWER9 cores
● Overall application performance degraded on GPU 

○ Until full time-step loop on GPU additional host-device memory transfers
○ After time-step loop on GPU plan optimization
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