
GPU infrastructure code and
performance for NIMROD

Jacob King (Tech-X Corporation)

With contributions from
Eric Howell (Tech-X Corporation)

Brian Cornille (Univ. of Wisconsin)

April 3rd 2022
CTTS SciDAC Meeting

Work supported by US DOE

Next gen computing: SciDAC codes need to exploit GPUs

● Perlmutter (NERSC), Frontier (OLCF) and Aurora (ALCF) contain GPUs
○ Three different hardware vendors (Nvidia, AMD, Intel)
○ Three different software eco-systems

● Dust yet to settle on unified programming paradigm
○ CUDA, HIP, SYCL, OpenCL, OpenACC, OpenMP 5, language standards
○ We’ve explored OpenACC for NIMROD – support by nvhpc / gcc
○ May switch to OpenMP 5 or language standards as dust settles

2

Effort splits NIMROD code into infrastructure and physics repos

● Physics: anything with units
● Infrastructure: FE evaluation & integration, linear algebra, parallel decomp,

FFTs, inverse mapping, etc.
● Infrastructure repo now open-source, open-access

○ See https://gitlab.com/NIMRODteam/nimrod-abstract
○ Allows access by ASCR/computing facility partners and compiler teams
○ Useful for hackathons and diagnosing performance and compiler issues

● Using gitlab enables modern software tools
○ Code review
○ Issue tracking
○ Continuous integration testing
○ Code coverage reports

3

https://gitlab.com/NIMRODteam/nimrod-abstract

Infrastructure repo close to maturity

● Relies on modern Fortran abstract types to enable flexibility
○ Define interface at abstract (virtual) level
○ Now: working on version with real types

● Investigating API on GPU before expanding concrete base classes
● Done: I/O, seams, MPI with mpi_f08, timing, FEM types, linear algebra,

Dirichlet boundary conditions, regularity
● Remaining big tasks: preconditioning, FFTs, surface integrals
● Next: report on progress on GPU by overviewing example application
● Example application: solve time-dependent Laplace equation in a periodic box

Thanks to the full GPU hackathon team!

For the openACC material here, I’d specifically like to thank Eric Howell, Brian
Cornille, Torrin Bechtel, Robbie Searles (Nvidia) and Vassillios Mewes (OLCF)

4

Example overview

● All module import ABSTRACT
base types at the example level

5

Example overview

● All data types are only know at
the abstract level

● Storage arrays allow different
concrete instantiations for
different blocks

● Timer and parallel types require
initialization of singleton objects

● Example takes command line
input (no namelist)

6

Example overview

● Mesh and block decomposition
set by initialization

● “dump_read” also initializes
parallel block decomposition

● Blocks govern FEM integration
and setting quadrature rules
and weights mirrors
non-abstract code

● This structure allows for natural
separate of blocks (e.g. CK type
bound to a CK block with CK
integration rules)

7

Example overview

● Minor penalty for not binding fields to
blocks: one extra copy after read

● #ifdefs based on compiler demonstrate
difficulty with modern Fortran

● Vectors and matrices are initialized from
FE field

● Each field (or combination of fields)
needs to know how to map to
appropriate linear algebra structures

○ See create_*_for_fem
● Basis functions are precomputed based

on FE field

8

Example overview

● Time step loop:
○ update quadrature storage
○ Create matrix/RHS
○ Call iterative solver
○ Use RHS norm (inf_norm in this

case) to test solution
○ Check convergence

9

Example overview

● After time step loop, we test solution

Wait! Where’s the GPU stuff?!?

10

Example overview

● Physics application is not completely
exempt from being GPU aware,
openACC statements required in
integrand routines

● Parallel clause create GPU kernel
● present/copyin clauses manage data

movement from host to device
● Structure of acc loops follow pre-set

pattern
● With full time step loop on device,

minimal copyin statements will be
needed (more on this later)

11

Example overview

● For completeness, here’s the RHS
routine

● It is pretty similar, but quadrature point
data from field is used

● Majority of OpenACC code in
infrastructure repo.

● Management of data locality is key
(next slide)

12

Device data management

● Unstructured data blocks:
○ persistent data on GPU
○ “!$acc enter data create”
○ “!$acc exit data delete”

● Structured data blocks:
○ GPU data in local scope
○ “!$acc data create”
○ “!$acc end data”

13

GPU port progress

● Integrand, vector assemble kernels on GPU
● Left to port: matvec, qp_update, matrix assemble
● Testing on Ascent at ORNL
● Kernels on 1x V100 GPU comparable or 2x faster than 32 POWER9 cores

○ CPU performance measured with timer
○ GPU performance measured with Nsight Compute
○ 64x64 FE mesh with bi-quintic basis functions

● But there’s 6x GPU/node but only 42 POWER9 cores
● Overall application performance degraded on GPU

○ Until full time-step loop on GPU additional host-device memory transfers
○ After time-step loop on GPU plan optimization

14

