Nonlinear, Extended-Magnetohydrodynamic Modeling of Disruption Mitigation

by

Brendan C. Lyons¹,

J. McClenaghan¹, C.C. Kim², S.C. Jardin³, N.M. Ferraro³, C Akçay¹, N.W. Eidietis¹, L.L. Lao¹, N. Hawkes⁴, G. Szepesi⁴, and JET contributors⁵

¹ General Atomics
² SLS2 Consulting
³ Princeton Plasma Physics Laboratory
⁴ Culham Centre for Fusion Energy
⁵ J. Mailloux, Nucl. Fusion (2022) <u>https://doi.org/10.1088/1741-4326/ac47b4</u>

Presented at the 2022 Sherwood Fusion Theory Conference Santa Rosa, California, USA April 4th, 2022

Modeling of Disruption Dynamics and Mitigation Requires a Multiphysics Model

- Disruptions pose a risk of damage to future tokamaks, necessitating robust mitigation techniques
- Most promising method uses pellet injection of impurities to radiate stored energy
- Simulations, validated against mitigation experiments, are required to project techniques to future devices
- Integrated model is required to capture all relevant physics
 - Magnetohydrodynamics (MHD) for macroscopic evolution of disruption dynamics
 - Atomic physics for ionization and radiation from injected impurities
 - Drift-kinetics for phase-space evolution of runaway electron population

M3D-C1 Code Overview

M3D-C1* Solves the Extended-MHD Equations

- Three-dimensional toroidal geometry
- Full (not reduced) MHD
- Solves for potential and stream-function fields for $\vec{A} \And \vec{v}$ ($\nabla \cdot \vec{B} = 0$ intrinsically)
- Includes resistivity, density diffusivity, viscosity, & thermal conductivity
- Two-fluid effects (optional)
- 3D high-order finite elements
 - Unstructured, triangular mesh in poloidal plane
 - Structured toroidally, but can pack planes
- Can solve with finite-thickness resistive wall in domain**

*S. C. Jardin, et al., Comput. Sci. Discovery 5, 014002 (2012). **N.M. Ferraro, et al. ,Phys Plasma23 056114 (2016).

M3D-C1 Solves the Extended-MHD Equations

Blue terms are 2-fluid $\frac{Cn}{2t} + \nabla \bullet (n\mathbf{V}) = \nabla \bullet D_n \nabla n + S_n$ $\frac{\partial \mathbf{A}}{\partial t} = -\mathbf{E} - \nabla \Phi, \quad \mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{J} = \nabla \times \mathbf{B}, \quad \nabla_{\perp} \bullet \frac{1}{\mathbf{P}^2} \nabla \Phi = -\nabla_{\perp} \bullet \frac{1}{\mathbf{P}^2} \mathbf{E}$ $nM_{i}(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \bullet \nabla \mathbf{V}) + \nabla p = \mathbf{J} \times \mathbf{B} - \nabla \bullet \mathbf{\Pi}_{i} + \mathbf{S}_{m}$ $\mathbf{E} + \mathbf{V} \times \mathbf{B} = \frac{1}{ne} \left(\mathbf{R}_{c} + \mathbf{J} \times \mathbf{B} - \nabla p_{e} - \nabla \bullet \mathbf{\Pi}_{e} \right) - \frac{m_{e}}{e} \left(\frac{\partial \mathbf{V}_{e}}{\partial t} + \mathbf{V}_{e} \bullet \nabla \mathbf{V}_{e} \right) + \mathbf{S}_{CD}$ $\frac{3}{2} \left| \frac{\partial p_e}{\partial t} + \nabla \bullet \left(p_e \mathbf{V} \right) \right| = -p_e \nabla \bullet \mathbf{V} + \frac{\mathbf{J}}{ne} \bullet \left[\frac{3}{2} \nabla p_e - \frac{5}{2} \frac{p_e}{n} \nabla n + \mathbf{R}_c \right] + \nabla \left(\frac{\mathbf{J}}{ne} \right) : \mathbf{\Pi}_e - \nabla \bullet \mathbf{q}_e + Q_\Delta + S_{eE}$ $\frac{3}{2} \left| \frac{\partial p_i}{\partial t} + \nabla \bullet \left(p_i \mathbf{V} \right) \right| = -p_i \nabla \bullet \mathbf{V} - \mathbf{\Pi}_i : \nabla \mathbf{V} - \nabla \bullet \mathbf{q}_i - Q_\Delta + S_{iE}$ $\mathbf{V}_{i} = \mathbf{V}_{i} - \mathbf{J} / ne$ $\mathbf{R}_{c} = \eta n e \mathbf{J}, \qquad \mathbf{\Pi}_{i} = -\mu \left[\nabla \mathbf{V} + \nabla \mathbf{V}^{\dagger} \right] - 2(\mu_{c} - \mu)(\nabla \bullet \mathbf{V})\mathbf{I} + \mathbf{\Pi}_{i}^{GV}$ $\mathbf{q}_{ei} = -\kappa_{ei} \nabla T_{ei} - \kappa_{\parallel} \nabla_{\parallel} T_{ei}$ $\mathbf{\Pi}_{e} = (\mathbf{B} / B^{2}) \nabla \bullet \left[\lambda_{h} \nabla \left(\mathbf{J} \bullet \mathbf{B} / B^{2} \right) \right], \qquad Q_{\Lambda} = 3m_{e} (p_{i} - p_{e}) / (M_{i} \tau_{e})$

KPRAD* Provides Needed Atomic Physics Information

- KPRAD solves for impurity-plasma interaction in low-density, coronal model
 - N.B. not coronal equilibrium
 - Based on ADPAK rate coefficients
 - Impurity charge states and electron density evolve according to ionization and recombination

 $\frac{\partial n_z}{\partial t} + \nabla \cdot (n_z \mathbf{v}) = \nabla \cdot (D \nabla n_z) + \mathcal{I}_{z-1} n_{z-1} - (\mathcal{I}_z + \mathcal{R}_z) n_z + \mathcal{R}_{z+1} n_{z+1} + \mathcal{S}_z$

- Thermal energy lost from plasma due to
 - Ionization
 - Line radiation
 - Bremsstrahlung radiation
 - Recombination radiation

• Subcycled much faster than typical MHD time steps

*D.G. Whyte, et al., Proc. of the 24th Euro. Conf. on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 21A, p. 1137.

KPRAD Couples* to the M3D-C1 Temperature Equation(s)

- Two temperature equations (electron & all-ions)
 - Dilution cooling of ions and electrons
 - Electrons lose energy to ionization and radiation
 - Main ions cool on electrons

$$n_e \left[\frac{\partial T_e}{\partial t} + \mathbf{v} \cdot \nabla T_e + (\Gamma - 1) T_e \nabla \cdot \mathbf{v} \right] + \sigma_e T_e = (\Gamma - 1) \left[\eta J^2 - \nabla \cdot \mathbf{q}_e - \mathcal{P}_{rad} + Q_{ei} - \Pi_e : \nabla \mathbf{v} \right]$$

$$n_* \left[\frac{\partial T_i}{\partial t} + \mathbf{v} \cdot \nabla T_i + (\Gamma - 1) T_i \nabla \cdot \mathbf{v} \right] + \sigma_* T_i = (\Gamma - 1) \left[-\nabla \cdot \mathbf{q}_* - Q_{ei} - \Pi_* : \nabla \mathbf{v} + \frac{1}{2} \varpi_* v^2 \right]$$

• Single temperature equation

- Evolves sum over all species
- T_{e}/T_{i} constant throughout time, implicitly assuming
 - Instantaneous thermal equilibration
 - Split of losses between species evolves as pressure ratio changes

*N.M. Ferraro et al. Nucl. Fusion 59 016001 (2019).

Verification Benchmarks of NIMROD & M3D-C1

Axisymmetric Benchmark Successful for Fast Impurity Injection in DIII-D Core

- Four cases solved by both M3D-C1 and NIMROD*
 - Lyons et al., PPCF 61, 064001 (2019)
 - Shown here: argon with Spitzer resistivity

Simulation setup

- DIII-D shot 137611 @ 1950 ms
- 2D, nonlinear, single-fluid
- Fixed boundary
- Continuous neutral impurity deposition
 - No impurities to start
 - Gaussian source

$$\frac{dn_z}{dt} = \nu \frac{R_0}{R} \exp\left[-\frac{(R - R_0)^2 + (Z - Z_0)^2}{2\delta^2}\right]$$

- Injection rate ~1 mm Ne/Ar per ms

- *C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004).
- C. Sovinec & J. King, J. Comput. Phys. 229, 5803 (2010).

Lyons Sherwood 4-22

Excellent Agreement Found Between Codes in 2D

- Quantitative agreement during thermal quench (TQ)
- Qualitative agreement during current quench (CQ)
- Low temperature in core causes resistivity to rise
 - P_{ohm} balances P_{loss}
 - Current drops more rapidly
- Current quench caused by contact with boundary
- Peak loss power when temperature on-axis falls near-zero

Impurities Induce Inside-Out Thermal Quench with Core Turbulence

Current Localizes to Thin, Expanding Shell that **Contacts Domain Boundary**

Lvons Sherwood 4-22

3D, Nonlinear Benchmark Between M3D-C1 & NIMROD for Realistic, Injected Pellet is Well-Underway

3D nonlinear MHD

- Fixed boundary
- Single-temperature equation

Pellet/deposition parameters

- 3 mm radius, pure neon
- 5 cm poloidal and 2.4 m toroidal half-width
- 200 m/s with realistic trajectory
- Ablation by local electron density and temperature according to model by Parks
- Work has motivated code development and provided insight into SPI physics

<u>M3D-C1 Modeling of DIII-D 160606 @ 2990 ms:</u> 0.7 MJ, 1.28 MA

M3D-C1 & NIMROD Differ in Timing of Instability Onset

- Early, radiation driven thermal quench in good agreement
- NIMROD shows earlier spike in radiation, driven by earlier MHD instability onset
- M3D-C1 observes stabilization from density diffusivity

Difference in 3D Benchmark Possibly Caused by Flow Discrepancy due to M3D-C1 Boundary Condition

- Flow differs even before time traces diverge, especially in open-field-line region
- Caused by M3D-C1 implementation of normal/poloidal no-flow BC
 - M3D-C1 uses potential formulation $\vec{u} = R^2 \nabla U \times \nabla \varphi + R^2 \omega \nabla \varphi + \frac{1}{R^2} \nabla_\perp \chi$
 - BCs should be:
 - No poloidal: $R \frac{\partial U}{\partial n} + \frac{1}{R^2} \frac{\partial \chi}{\partial \tau} = 0$

• No normal:
$$-R\frac{\partial U}{\partial \tau} + \frac{1}{R^2}\frac{\partial \chi}{\partial n} = 0$$

- Instead using

 $\partial U/\partial n = 0$ and $\chi = 0$ U = 0 and $\partial \chi/\partial n = 0$ which over-constrains solution

New BCs implemented in M3D-C1

- Using only new no-poloidal gives better flow agreement, but does not change 3D benchmark results
- Maybe needs both, but that's currently numerically unstable

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Differences in Other Key Profiles Perhaps Hint at Another Cause?

NIMROD C1: Old no-pol. C1: New no-pol.

Two-Temperature Modeling Shows Delayed Thermal Quench

- M3D-C1 benchmark case re-run with two-temperature model
- Early dynamics similar, but deviates as electrons cool faster than singletemperature model
 - Less ablation and ionization
 - Slower thermal quench
 - Delayed instability
- Single-temperature model may underpredict thermal-quench times and overpredict pellet assimilation

SPI Plume Modeling in JET

M3D-C1 Multi-Fragment Modeling Uses Realistic Model for Shattered Plumes

Script created to generate shatter plumes

- Uniform fragments
- Fracture-threshold theory
 <u>T.E. Gebhart et al. IEEE 48, 6</u>
 (2019)
- Distribution options
 - Sunflower distribution
 - 2D uniform
 - Gaussian poloidal/toroidal spread
- Easily generate random (but reproduceable) plumes for different pellet size, speed, and composition
- Being used for reference plumes in JET & KSTAR modeling by M3D-C1, NIMROD, and JOREK

Same parameters, different random plumes

Spread in tokamak geometry

M3D-C1 JET Modeling with Realistic Plumes Performed for JET Scenario 1

- Based on high-thermal-energy (Scenario 1) plasma with 8.1 mm cylindrical pellet
- Equilibria reconstructed with kinetic profiles acquired for recent experiment
- Two realistic pellets travel along nominal trajectory
 - Pure Neon
 - 30 1.71-mm shards
 - 150 m/s
 - 95% D:
 - 85 1.21-mm shards
 - 300 m/s
 - Uniform shard size computed from ablation-average of cloud
- Also consider same plumes but swapped speeds

JET 95707 I_p = 2.4 MA W_{th} = 3.4 MJ (Scenario 1 High W_{th})

JET Modeling Shows Competition Between Rate of Travel and Rate of Radiative Dissipation

- All plumes show similar peak radiated power
- Dynamics versus time
 - Fast neon has earliest TQ
 - Others have similar TQ times

Dynamics versus penetration depth

- Slow: both travel same to same depth – radiation dominates
- Fast: mixed pellet travels deeper doesn't radiate fast enough to induce instability
- Deeper penetration leads to increased mode coupling

NIMROD JET Modeling With Same Realistic Plumes Also Underway

Realistic plumes

- Faster, mixed pellet penetrates further, as in M3D-C1
- Generally deeper penetration than M3D-C1, possibly due to impurity deposition behind pellet?
- Simulations with increased ablation rate show acceleration of thermal quench
 - Longer period of similar decay perhaps shows increased dominance of radiative dissipation
 - Comparison challenging due to use of different equilibria

Future M3D-C1 Disruption Mitigation Work

M3D-C1 & NIMROD 3D benchmark

- Continue convergence studies
 - Poloidal & toroidal resolution
 - Time step
 - Diffusivities
- Need to determine metrics for success
 - Strong nonlinearity makes exact agreement difficult
 - Chaotic evolution: small discrepancies early cause exponential deviation
 - Perhaps use physically relevant quantities,
 e.g., assimilation fraction, radiation fraction/peaking, TQ time
- Validate JET modeling against experimental results
- Perform & validate KSTAR modeling of multiple toroidal injection
- Predictive modeling for ITER SPI

