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* Motivation and existing approaches for MHD modeling in stellarators



Understanding nonlinear MHD stability is important for fusion

Clarifying the role of 3D effects is critical for determining when instabilities are benign or become disruptive.

Like tokamaks, stellarators can be susceptible to (sometimes disruptive) pressure- and current-driven instabilities:
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https://inis.iaea.org/search/search.aspx?orig_q=RN:42016414
https://iopscience.iop.org/article/10.1088/1741-4326/aba72b

Tools to model nonlinear MHD in stellarator geometry have been limited

Existing approaches for understanding MHD in stellarators typically involve:

Equilibrium models (J X B = Vp) + Linear MHD stability

Comparatively fast and cheap to evaluate.

» Appropriate for applications requiring tast calculation of 3D fields (e.g. optimisation and reconstruction).

Dynamical accessibility of solutions is not guaranteed.

It an equilibrium code predicts a finite-f equilibrium with chaotic fields and magnetic islands:
» (an the plasma actually reach this state with heating?
» What happens if the system crosses a stability boundary?



Exploration of new macroscopic physics in stellarators

Initial-value methods are needed to examine important questions:
» Evolution of pressure protiles for self-consistent equilibria, including for non-integrable fields.

* Examine dynamical accessibility of 3D equilibria (integrable and non-integrable).

» Determine nonlinear stability.

*  Many concepts which may be important for future designs have not been tested experimentally, elevating the

role of theory and simulation for physics understanding and to inform design.

This can provide insight into guestions that are relevant to tokamaks too:

Current-driven instabilities
- What is the appropriate balance between current and magnetic shear?

Finite net toroidal current/high bootstrap fraction (e.g., QA)
- To what extent will tokamak physics challenges be inherited (including need for more active control)?
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* Examples



Example: Validation of ideal linear MHD stability in optimised QA configuration

For an optimised QA equilibrium (NFP=3, $=2%), we verify linear ideal MHD stability and show formation
of higher-m magnetic islands on resistive instability timescales:
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Example: Enhanced temperature flattening due to increased heating power

* Free-boundary simulation of NFP=10 heliotron, with heat source applied to vacuum field.
» [ is limited by low-n (n=1,n=2) MHD mode activity that leads to flattening of central electron temperature.
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« M3D-C1 method and performance in stellarator geometry



M3D-C1 physics models in stellarator geometry

 Currently, the single-fluid model has been veritied in stellarator geometry for 3D calculations:

M3D-C' model (single-fluid)
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» Two-fluid model (implemented in tokamak geometry) not yet tested in stellarator geometry. Should work, in
principle, but may require minor modifications to include terms that are not small when 94 # 0.

 Because of toroidal mode coupling, there is currently no linear version of the code for stellarator geometry.

 Other physics models that are implemented but not yet tested in stellarator geometry include: pellet injection,
torgue sources and rotation and resistive wall.




Overview of M3D-C1-S method

Model equations expanded in cylindrical (R, ¢, Z) coordinates.

Stellarator geometry: FE defined and numetrical integration performed in ‘logical’ (x, y, z) coordinates.

Mapping (x,v,z) — (R, @, Z) specified by boundary shape. The only condition is that it must preserve C*-continuity.
In stellarator geometry, careful treatment of higher order derivatives was required to preserve C' property:

Tokamak: orthogonality of (R, ¢, Z) means derivatives up to 4™ order can be integrated (using integration-by-parts).

Stellarator: (x, y, z) not orthogonal under mapping from (R, @, Z), 9@ terms introduce mixed derivatives that are not C'.
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Impact of interpolation on initial magnetic field structure

n both fixed- and free-boundary, the initial condition for the magnetic ns=49 mesh=12K ns=193 mesh=12K
field is specified from an input (VMEC, FIELDLINES or MGRID). mpol=9, ntor=5
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Interpolated onto M3D-C1 mesh with Zernike basis functions:
n zer=2*mpol (fixed boundary) or 1*mpol (free boundary).

The present scheme doesn't explicitly seek to preserve the topology of
the input magnetic field.

The topological structure of the magnetic field initial condition

depends particularly on the resolution of input:
E.g. VMEC: ns, mpol, ntor.

Flements=307512, nplanes=24, cross-section=7.57m?, typical poloidal
inear dimension=2.43cm.

n general, this is not an issue except when the objective is to study the
ohysics interpretation of exactly integrable equilibria, which are not
generally considered to be ‘common’.




Convergence with toroidal resolution

 For the LHD g-limit studies, large nplanes is needed for 0.6{ (Heating ratio = 10]
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Performance and scaling

» (CPU hours per 1, scales strongly with nplanes.

* Numerical stability depends strongly on dt *kappar/kappat, which scales inversely with nplanes.
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Comparison of approaches: Logical coordinates vs. adaptation of mesh to geometry

» A comparison [3] between two approaches to accommodating stellarator geometry found that mapping to
logical coordinates was still less expensive than adapting the mesh to geometry.
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[3] Zhou et al. Nuclear Fusion 61.8 (2021). 12
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Next steps

Code improvements:

* Improve interface for initialising free-boundary equilibria.

 Expand post-processing utilities (incl. tools for analysing 3D field structure).
 Extend interface/options for prescribing (computational) boundary shape.

Physics models:
 Consider implementation of bootstrap current model.
* Multi-region mesh (resistive wall, colls)

On-going physics studies:
e (Collaborations with LHD and W7-X (both verification and validation)

Opportunities:
» Lots of MHD experiments being proposed for upcoming W7-X campaign
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